[bookmark: _Hlk132216852][image:]
BHARATIVIDYAPEETH’S
INSTITUTEOFCOMPUTERAPPLICATIONS&MANAGEMENT (BVICAM)
(AffiliatedtoGuruGobindSinghIndraprasthaUniversity,ApprovedbyAICTE,NewDelhi)A-4,PaschimVihar,RohtakRoad,NewDelhi-110063,Visitusat:http://www.bvicam.in/
Course Code: MCA-109 Course Name: Data And File Structures

Practice Questions (Theory)

	UNIT I

	Q1.
	 In C, how do you declare and initialize a one-dimensional array?

	Q2.
	 What is the time complexity for accessing an element in an array by index?

	Q3.
	 Explain the concept of a singly linked list. How is it different from a doubly linked list?

	Q4.
	 How do you implement a stack using an array in C? Provide push and pop operations.

	Q5.
	 Define a queue in C. What are the basic operations that can be performed on a queue?

	Q6.
	 Describe the process of traversing an array in C using a loop.

	Q7.
	 Explain the logic behind traversing a linked list in C and accessing its elements.

	Q8.
	 How does a stack work in C? Provide an example scenario where a stack can be used.

	Q9.
	 Differentiate between a linear queue and a circular queue. Explain their advantages and disadvantages.

	Q10.
	 Discuss the concept of a doubly linked list in C and its applications.

	Q11.
	Write a C program to find the sum of all elements in an array.

	Q12.
	 Implement a function in C to insert a node at the beginning of a linked list.

	Q13.
	 Develop a C program to reverse a stack using an auxiliary stack.

	Q14.
	 Create a circular queue in C and perform enqueue and dequeue operations.

	Q15.
	 Design a C program to merge two sorted arrays into a single sorted array.

	Q16.
	 Compare the time complexity of linear search and binary search algorithms for arrays in C.

	Q17.
	 Analyze the time complexity of inserting an element at the beginning and end of a linked list.

	Q18.
	 Investigate the memory usage of a stack implemented using arrays versus linked lists in C.

	Q19.
	 Examine the performance of a priority queue versus a regular queue in C.

	Q20.
	 Evaluate the efficiency of implementing a queue using a linked list compared to using arrays in C.

	Q21.
	 Assess the suitability of using arrays to implement a sparse matrix in C.

	Q22.
	Critique the efficiency of various sorting algorithms (e.g., bubble sort, selection sort) for arrays in C.

	Q23.
	 Evaluate the effectiveness of using a linked list to implement a dynamic data structure in C.

	Q24.
	 Appraise the advantages and disadvantages of using stacks in recursion in C programming.

	Q25.
	 Judge the reliability of a queue data structure for handling concurrent operations in a multi-threaded C program.

	Q26.
	 In C, how do you declare and initialize a one-dimensional array?

	Q27.
	 What is the time complexity for accessing an element in an array by index?

	Q28.
	 Explain the concept of a singly linked list. How is it different from a doubly linked list?

	Q29.
	 How do you implement a stack using an array in C? Provide push and pop operations.

	Q30.
	 Define a queue in C. What are the basic operations that can be performed on a queue?

	
	UNIT II

	Q31.
	In C, how do you declare and initialize a binary tree node structure?

	Q32.
	What is the height of a binary tree? How is it calculated?

	Q33.
	Explain the properties of a binary heap. How is it different from a binary search tree?

	Q34.
	Define the concept of a balanced tree. How does it relate to AVL trees and B-trees?

	Q35.
	Describe the process of traversing a binary tree in C using depth-first search (DFS).

	Q36.
	How does a max-heap differ from a min-heap? Provide an example of each.

	Q37.
	Explain the process of balancing an AVL tree after insertion or deletion operations.

	Q38.
	Discuss the rules for inserting and deleting nodes in a B-tree in C.

	Q39.
	Write a C program to implement a binary search tree (BST) and perform insertion and deletion operations.

	Q40.
	Implement a function in C to insert a node into a binary heap and maintain the heap property.

	Q41.
	Develop a C program to balance an AVL tree after performing a series of insertions and deletions.

	Q42.
	Create a B-tree in C and perform a search operation to find a specific key.

	Q43.
	. Compare and contrast the time complexity of various tree traversal algorithms (e.g., in-order, pre-order, post-order).

	Q44.
	Analyze the time complexity of heapify operation in a binary heap and its impact on heap construction.

	Q45.
	Investigate the time complexity of rotation operations in an AVL tree and their effect on tree balancing.

	Q46.
	Examine the performance of a B-tree in terms of search, insertion, and deletion operations compared to other tree data structures.

	Q47.
	. Assess the suitability of using a binary search tree to store and retrieve sorted data efficiently in C.

	Q48.
	Critique the efficiency of various heap operations (e.g., insert, delete, extract-min/max) in C.

	Q49.
	Evaluate the effectiveness of AVL trees in maintaining balance and optimizing search performance in C.

	Q50.
	Judge the reliability of B-trees for handling large datasets and supporting efficient range queries in C.

	
	UNIT III

	Q51.
	In C, how do you represent a graph using an adjacency matrix? Provide an example.

	Q52.
	Define the concept of an edge in a graph. How is it different from a vertex?

	Q53.
	Explain the difference between a directed graph and an undirected graph in C. Provide examples of each.

	Q54.
	Describe the process of traversing a graph using depth-first search (DFS) in C.

	Q55.
	 Write a C program to implement a breadth-first search (BFS) algorithm for graph traversal.

	Q56.
	Develop a C program to find the shortest path between two vertices in a graph using Dijkstra's algorithm.

	Q57.
	 Analyze the time complexity of performing depth-first search (DFS) on a graph with V vertices and E edges in C.

	Q58.
	Examine the space complexity of representing a graph using an adjacency list versus an adjacency matrix in C.

	Q59.
	. Evaluate the effectiveness of using breadth-first search (BFS) versus depth-first search (DFS) for finding connected components in a graph in C.

	Q60.
	Judge the reliability of using Dijkstra's algorithm for finding shortest paths in a weighted graph with negative edge weights in C.

	
	

	Q61.
	In C, how do you implement a hash table using chaining? Provide an example.

	Q62.
	Define the term "collision" in the context of hashing. How is it handled in separate chaining?

	Q63.
	. Explain the process of hashing a key to find its corresponding index in a hash table in C.

	Q64.
	Describe the concept of open addressing in hashing. How does it differ from chaining?

	Q65.
	Write a C program to implement a hash table using separate chaining for collision resolution.

	Q66.
	Develop a C program to perform linear probing for collision resolution in a hash table.

	Q67.
	 Analyze the time complexity of searching, inserting, and deleting elements in a hash table implemented with separate chaining.

	Q68.
	Examine the impact of load factor on the performance of a hash table in C.

	Q69.
	Evaluate the efficiency of various collision resolution techniques in hashing, such as separate chaining and linear probing, in C.

	Q70.
	Judge the reliability of using hashing for implementing data structures like sets and maps in C programming.

**************Wish you luck!***************
 (
Page

2

of

5
)
image1.jpeg

