Bharati Vidyapeeth's Institute of Computer Applications and Management

A-4, Paschim Vihar, New Delhi-63.

MCA – 1st Semester Model Paper Discrete Structures

Note: Answer all Questions

Max. Marks: 75 Max. Time: 03 Hrs

Section A compulsory

Section A

- 1) Find the dual of a(b'c' + bc) and a'bc' + a'b'c
- 2) Determine whether the relation R on a set A is an equivalence relation. A is a set of all people in the Indian electoral list database and aRb if a and b have the same last name?
- 3) Show that the 4 fourth roots of unity form a group with respect to multiplication.?
- 4) Find total number of subgraph and spanning subgraph in K6 & L5
- 5) Find integers m and n such that 512 m + 320 n = 64

25

Section B

Unit 1

- 1) A survey was conducted among 1000 people. 595 among are democrats, 595 wear glasses and 550 like ice-cream. 395 democrates wear glasses.350 democrates like ice-cream. 400 people wear glasses and like ice-cream.250 democrates wear glasses and like ice-cream.
- a) How many people are not democrats who do not wear glasses and do not like ice-cream?
- b) How many democrates do not wear glasses and like ice-cream?

6.5

2) Prove the following without using truth table

a) $(p \vee q) (p->r) (q->r)=>r$

OR

1) Whether the relation R on a set a is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive.

aRb, if and only if ab>=0 where a&b are integers

6

- 2) From a club of 6 men and 7 women, in how many ways we can select a committee of
- a) 3 men and 4 women
- b) 4 persons which has atleast one woman
- c) 4 persons that has atmost one man

6.5

Unit 2

1) Simplify the following Boolean expression using K-map w(x + y(z + x') + y') + w'x'y'z'

2) Let L is a distributive lattice. Show that if there exists an a with $a \wedge x = a \wedge y$ and a $v \times x = a \vee y$ then $x = y$	6.5
OR	
 Reduce the following using K-map x(y'z + y(xz+y')) + x'(z+y(z+x')) Solve recurrence relation 	6
a)	6.5
Unit 3	
 1) If * is the binary operation on the set R of real numbers defined by a * b= a + a) Find if {R,*} is a semigroup. Is it commutative? b) Find the identity element, if exists. 	
c) Which element has inverses and what they are?	6
2) Use fermet's little theorem to find 5 1(mod12)	
OR	
 Prove intersection of 2 normal subgroups is also a normal subgroup Find prime factorization of 420 and 7007 	12.5
Unit 4 1) Find minimum spanning tree	6
2) Evaluate postfix expression 72-3 +232 + - 13 - */	6. 5
OR	
 Give an example of a graph which contains an Eulerian circuit that is also a Hamiltonian circuit. an Eulerian circuit and a Hamiltonian circuit that are distinct. an Eulerian circuit, but not a Hamiltonian circuit a Hamiltonian circuit, but not an Eulerian circuit Neither an Eulerian circuit, nor a Hamiltonian circuit 	12.5