
MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III 1

UNIT-III

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III 2

In this unit, we’ll cover the following:

• Object Oriented Programming Concepts

• Classes and Objects

• Inheritance

• Polymorphism

• Abstract Classes

• Threads

• Exception Handling

Learning Objectives

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Object-oriented programming (OOP) is a method of structuring a

program by bundling related properties and behaviors into

individual objects.

• An object could represent a person with properties like a name, age,

and address and behaviors such as walking, talking, breathing, and

running. Or it could represent an email with properties like a recipient

list, subject, and body and behaviors like adding attachments and

sending.

• Object-oriented programming is an approach for modeling concrete,

real-world things, like cars, as well as relations between things, like

companies and employees, students and teachers, and so on. OOP

models real-world entities as software objects that have some data

associated with them and can perform certain functions.

Object Oriented

Programming Concepts

3

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Python has been an object-oriented language since it existed. Because

of this, creating and using classes and objects are very easy.

• Unlike procedure oriented programming, where the main emphasis is

on functions, object oriented programming stresses on objects.

• The key takeaway is that objects are at the center of object-oriented

programming in Python, not only representing the data, as in

procedural programming, but in the overall structure of the program as

well.

OOPS in Python

4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Class − A user-defined prototype for an object that defines a set of

attributes that characterize any object of the class. The attributes are

data members (class variables and instance variables) and methods,

accessed via dot notation.

• Class variable − A variable that is shared by all instances of a class.

Class variables are defined within a class but outside any of the class's

methods. Class variables are not used as frequently as instance

variables are.

• Data member − A class variable or instance variable that holds data

associated with a class and its objects.

• Function overloading − The assignment of more than one behavior to

a particular function. The operation performed varies by the types of

objects or arguments involved.

Overview of OOP

Terminology

5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Instance variable − A variable that is defined inside a method and

belongs only to the current instance of a class.

• Inheritance − The transfer of the characteristics of a class to other

classes that are derived from it.

• Instance − An individual object of a certain class. An object obj that

belongs to a class Circle, for example, is an instance of the class

Circle.

• Instantiation − The creation of an instance of a class.

• Method − A special kind of function that is defined in a class definition.

• Object − A unique instance of a data structure that's defined by its

class. An object comprises both data members (class variables and

instance variables) and methods.

• Operator overloading − The assignment of more than one function to

a particular operator.

Overview of OOP

Terminology continued…

6

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Problem with primitive and advanced data types:

Aarti=[“Aarti Sharma”,24, “Officer”, 2018]

Supreet=[“Supreet Kaur”, “Sr. Manager”, 2010]

• It can make larger code files more difficult to manage.

• It can introduce errors if not every employee has the same number of

elements in the list.

A great way to make this type of code more manageable and more

maintainable is to use classes.

Creating a Class in

Python

7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Classes are used to create user-defined data structures. Classes

define functions called methods, which identify the behaviors and

actions that an object created from the class can perform with its data.

• A class is a blueprint for how something should be defined. It doesn’t

actually contain any data.

• While the class is the blueprint, an instance is an object that is built

from a class and contains real data. Put another way, a class is like a

form or questionnaire. An instance is like a form that has been filled out

with information.

Some points on Python class:

• Classes are created by keyword class.

• Attributes are the variables that belong to a class.

• Attributes are always public and can be accessed using the dot (.)

operator. Eg.: Myclass.Myattribute

•

Classes

8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

All class definitions start with the class keyword, which is followed by the

name of the class and a colon. Any code that is indented below the class

definition is considered part of the class.

The first string inside the class is called docstring and has a brief

description about the class. Although not mandatory, this is highly

recommended.

Class My_Class:

‘ I am creating my first class in Python’

x=5

A class creates a new local namespace where all its attributes are

defined. Attributes may be data or functions.

Defining a Class

9

https://www.programiz.com/python-programming/namespace

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

An Object is an instance of a Class. A class is like a blueprint while an

instance is a copy of the class with actual values.

An object consists of :

• State: It is represented by the attributes of an object. It also reflects the

properties of an object.

• Behavior: It is represented by the methods of an object. It also reflects

the response of an object to other objects.

• Identity: It gives a unique name to an object and enables one object to

interact with other objects.

Creating an Object in

Python

10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Declaring Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be instantiated.

All the instances share the attributes and the behavior of the class. But the

values of those attributes, i.e. the state are unique for each object. A

single class may have any number of instances.

Create an object named p1, and print the value of x:

p1 = My_Class()

print(p1.x)

The class object could be used to access different attributes. Attributes

may be data or method. Methods of an object are corresponding functions

of that class.

Creating an Object in

Python

11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Class functions that begin with double underscore _ are called special

functions as they have special meaning.

Of one particular interest is the _init_() function. This special function gets

called whenever a new object of that class is instantiated.

This type of function is also called constructors in Object Oriented

Programming (OOP) languages like C++ and Java. We normally use it to

initialize all the variables or object state.

Like methods, a constructor also contains a collection of statements(i.e.

instructions) that are executed at the time of Object creation. It is run as

soon as an object of a class is instantiated.

The __init__() Function

12

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

class Complex_Number:

def _init_(self, r=0,i=0):

self.real = r

self.imag=i

def get_data(self):

print(f’{self.real} + {self.imag}j’)

num1=Complex_Number(2,3)

num1.get_data()

num2=Complex_Number(5)

num2.attr = 10

print(num2.real, num2.imag, num2.attr)

print(num1.attr)

The __init__() Function

13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Objects can also contain methods. Methods in objects are functions that

belong to the object.

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def myfunc(self):

print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

Object Methods

14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The self parameter is a reference to the current instance of the class, and

is used to access variables that belongs to the class.

• It does not have to be named self, you can call it whatever you like, but

it has to be the first parameter of any function in the class

• Class methods must have an extra first parameter in the method

definition. We do not give a value for this parameter when we call the

method, Python provides it.

• If we have a method that takes no arguments, then we still have to

have one argument.

• This is similar to this pointer in C++ and this reference in Java.

• When we call a method of this object as myobject.method(arg1, arg2),

this is automatically converted by Python into

MyClass.method(myobject, arg1, arg2) – this is all the special self is

about.

Self Parameter

15

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Any attribute of an object can be deleted anytime, using the del
statement.

p1.age = 40

del p1.age

del p1.myfunc()

del p1

del() method

A class can implement the special method __del__(), called a destructor,

that is invoked when the instance is about to be destroyed.

Deleting Attributes and

Objects

16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

class Point:

def __init__(self,x=0,y=0)

self.x=x

self.y=y

def __del__(self)

class_name = self.__class__.__name__

print class_name, “destroyed”

pt1=point()

pt2 = pt1

pt3 = pt1

print id(pt1), id(pt2), id(pt3)

del pt1 del pt2 del pt3

This __del__() destructor prints the class name of an instance that is about to be

destroyed.

Deleting Attributes and

Objects

17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Every Python class keeps following built-in attributes and they can be

accessed using dot operator like any other attribute −

• __dict__ − Dictionary containing the class's namespace.

• __doc__ − Class documentation string or none, if undefined.

• __name__ − Class name.

• __module__ − Module name in which the class is defined. This

attribute is "__main__" in interactive mode.

• __bases__ − A possibly empty tuple containing the base classes, in

the order of their occurrence in the base class list.

Built-In Class Attributes

18

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

class Employee:

‘Common base class for all employees’

empCount=0

del __init__(self, name, salary):

self.name=name

self.salary=salary

Employee.emCount +=1

def displayCount(self):

print (“Total employee = ”, Employee.empCount)

def displayEmployee(self):

print (“name =“ , self.name, “, Salary = “, self.salary)

Built-In Class Attributes

19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

print “Employee.__doc__:“ , Employee.__doc__

print “Employee.__name__:“ , Employee.__name__

print “Employee.__module__:“ , Employee.__module__

print “Employee.__bases__:“ , Employee.__bases__

print “Employee.__dict__:“ , Employee.__dict__

Built-In Class Attributes

20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Python uses ‘_’ symbol to determine the access control for

a specific data member or a member function of a class.

Access specifiers in Python have an important role to play

in securing data from unauthorized access and in

preventing it from being exploited.

• A Class in Python has three types of access modifiers –

1. Public Access Modifier

2. Protected Access Modifier

3. Private Access Modifier

Access Modifiers in Python :

Public, Private and Protected

21

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The members of a class that are declared public are easily

accessible from any part of the program. All data members

and member functions of a class are public by default.

In previous examples :

self.name

self.age

myfunc()

Are all public members.

Public Access Modifier

22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The members of a class that are declared protected are only accessible to

a class derived from it. Data members of a class are declared protected

by adding a single underscore ‘_’ symbol before the data member of that

class.

class student:

_name = None

_roll = None

_branch = None

def __init__(self, name , roll, branch):

self._name = name

self._roll = roll

self._branch = branch

def _displayRollAndBranch(self):

print(self._roll)

print(self._branch)

Protected Access

Modifier

23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Class Derived_Stud(student):

def __init__(self, name, roll, branch):

student.__init__(self, name, roll, branch)

def displayDetails:

print(“Name:”, self.name)

self._displayRollAndBranch()

Obj = Derived_Stud(“Anuj”, 170334, “Computer Applications”)

Obj.displayDetails()

In the above program,_name, _roll and _branch are protected data

members and _displayRollAndBranch() method is a protected method of

the super class Student. The displayDetails() method is a public member

function of the class Derived_Stud.

Protected Access

Modifier

24

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The members of a class that are declared private are accessible within the

class only, private access modifier is the most secure access modifier.

Data members of a class are declared private by adding a double

underscore ‘__’ symbol before the data member of that class.

class student:

__name = None

__roll = None

__branch = None

def __init__(self, name , roll, branch):

self.__name = name

self.__roll = roll

self.__branch = branch

def _displayDetails(self):

print(self.__name)

print(self.__roll)

print(self.__branch)

Private Access Modifier

25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

def accessPrivateMethod(self)

self.__discplayDetails()

Obj = student(“Anuj”, 170334, “Computer Applications”)

Obj.accessPrivateMethod()

In the above program,__name, __roll and __branch are private data

members and _displayDetails() method is a private member function of

the class student. acessPrivateMethod() method is a public member

function of the class student which can be accessed from anywhere

within the program. The acessPrivateMethod() method accesses the

private members of the class student.

Private Access Modifier

26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• A decorator is a design pattern in Python that allows a user to add new

functionality to an existing object without modifying its structure. Python has an

interesting feature called decorators to add functionality to an existing code.

• This is also called metaprogramming because a part of the program tries to

modify another part of the program at compile time.

• Decorators are very powerful and useful tool in Python since it allows

programmers to modify the behavior of function or class. Decorators allow us

to wrap another function in order to extend the behavior of the wrapped

function, without permanently modifying it.

• Functions in Python can be used or passed as arguments.

– A function is an instance of the Object type.

– You can store the function in a variable.

– You can pass the function as a parameter to another function.

– You can return the function from a function.

Decorators in Python

27

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Example 1: Treating the functions as objects.

def shout(text):

return text.upper()

print(shout(“Hello”))

yell=shout

print(yell(“Hello”))

Example 2: Passing the function as argument

def shout(text):

return text.upper()

def whisper(text):

return text.lower()

def greet(func):

greeting = func(“Hi ! I am created by a function passed as an argument”)

greet(shout)

greet(whisper)

Decorators in Python

28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Another example:

def inc(x):

return x+1

def dec(x):

return x-1

def operator(func,x):

result=func(x)

return result

>>>operator(inc,21)

>>>operator(dec,21)

Decorators in Python

29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Example 3: Returning functions from another functions.

def is_called():

def is_returned():

print(“Hello”)

return is_returned

new = is_called()

new()

Here is_retured() is a nested function which is defined and returned each time we call

is_called().

Decorators in Python

30

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Functions and methods are called callable as they can be called.

Basically, a decorator takes in a function, adds some functionality and returns it.

def make_pretty(func):

def inner():

print(“I got decorated”)

func()

return inner

def ordinary()

print(“I am ordinary”)

>>>ordinary()

>>>pretty=make_pretty(ordinary)

>>>pretty()

The function ordinary() got decora.ted and the returned function was given the name pretty().

We can see that the decorator function added some new functionality to the original function.

The decorator acts as a wrapper.

Decorators in Python

31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Generally, we decorate a function and reassign it as,

ordinary = make_pretty(ordinary)

We can use the @symbol along with the name of the decorator function and place it above

the definition of the function to be decorated. For example,

@make_pretty

def ordinary()

print(“I am ordinary”)

It is equivalent to following:

def ordinary()

print(“I am ordinary”)

ordinary = make_pretty(ordinary)

Decorators in Python

32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

def smart_divide(func):

def inner(a,b):

print(“I am going to divide ”, a, “ and “, b)

if b==0:

print(“Can not divide”)

return

return func(a,b)

return inner

@smart_divide

def divide(a,b):

print(a/b)

>>>divide(2,5)

>>>divide(2,0)

Decorators with

parameters

33

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

There can be three types of methods in a class:

1. Instance methods

2. Class Methods

3. Static Methods

• The method MyFunc() is a regular instance method. That’s the basic, no-frills method

type you’ll use most of the time. You can see the method takes one parameter, self,

which points to an instance of class Person when the method is called (but of course

instance methods can accept more than just one parameter).

• Through the self parameter, instance methods can freely access attributes and other

methods on the same object. This gives them a lot of power when it comes to modifying

an object’s state.

• Not only can they modify object state, instance methods can also access the class itself

through the self.__class__ ttribute. This means instance methods can also modify class

state.

Different Types of Methods

34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

@classmethod

Def classmethod(cls):

return cls

Above method is marked with a @classmethod decorator to flag it as

a class method.

Instead of accepting a self parameter, class methods take a cls

parameter that points to the class—and not the object instance—when the

method is called.

Because the class method only has access to this cls argument, it can’t

modify object instance state. That would require access to self. However,

class methods can still modify class state that applies across all instances

of the class.

Class Methods

35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

@staticmethod

Def staticmethod():

return

Above method is marked with a @staticmethod decorator to flag it as

a static method.

This type of method takes neither a self or a cls parameter (but of course

it’s free to accept an arbitrary number of other parameters).

Therefore a static method can neither modify object state nor class state.

Static methods are restricted in what data they can access - and they’re

primarily a way to namespace your methods.

Static Methods

36

https://realpython.com/python-namespaces-scope/

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• A class method takes cls as first parameter while a static method

needs no specific parameters.

• A class method can access or modify class state while a static method

can’t access or modify it.

• In general, static methods know nothing about class state. They are

utility type methods that take some parameters and work upon those

parameters. On the other hand class methods must have class as

parameter.

• We use @classmethod decorator in python to create a class method

and we use @staticmethod decorator to create a static method in

python.

Class Vs Static Methods

37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

When to use what?

• We generally use class method to create factory methods. Factory

methods return class object (similar to a constructor) for different use

cases.

• We generally use static methods to create utility functions.

How to define a class method and a static method?

To define a class method in python, we use @classmethod decorator and

to define a static method we use @staticmethod decorator.

Class Vs Static Methods

38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

from datetime import date

class person:

def __init__(self, name, age):

self.name=name

self.age=age

@classmethod

def fromBirthYear(cls, name, year):

return cls(name, date.today().year)

@staticmethod

def isAdult(age):

return age>=18

person1= person(“Anuj”, 21)

person2= person.fromBirthYear((“Anuj”, 2000)

print(person1.age)

print(person2.age)

Class Vs Static Methods

39

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Nothing in Python is truly private; internally, the names of private methods and attributes

are mangled and unmangled on the fly to make them seem inaccessible by their given

names.

In Python, we use double underscore (Or __) before the attributes name and those attributes

will not be directly visible outside.

class myClass:

__hiddenVariable = 0

def add(self, increment):

self.__hiddenVariable += increment

print(self.__hiddenVariable)

myObject = myClass()

myObject.add(2)

myObject.add(5)

print(myObject.__hiddenVariable)

Data Hiding in Python

40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

In the previous code, we tried to access hidden variable outside the class using object and it

threw an exception.

Now try,

Print(myObject._myClass__hiddenVariable)

Python protects those members by internally changing the name to include the class name.

You can access such attributes as object._className__attrName.

Data Hiding in Python

41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Inheritance is the capability of one class to derive or inherit the properties from another

class. The benefits of inheritance are:

It represents real-world relationships well.

• It provides reusability of a code. We don’t have to write the same code again and again.

Also, it allows us to add more features to a class without modifying it.

• It is transitive in nature, which means that if class B inherits from another class A, then all

the subclasses of B would automatically inherit from class A.

In inheritance, the child class acquires the properties and can access all the data members

and functions defined in the parent class. A child class can also provide its specific

implementation to the functions of the parent class.

Different forms of Inheritance:

1. Single inheritance: When a child class inherits from only one parent class, it is called

single inheritance.

class derived-class(base class):

<class-suite>

Inheritance in Python

42

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

2. Multiple inheritance: When a child class inherits from multiple parent classes, it is called

multiple inheritance. Unlike Java and like C++, Python supports multiple inheritance. We

specify all parent classes as a comma-separated list in the bracket.

class derive-class(<base class 1>, <base class 2>, <base class n>):

<class - suite>

3. Multilevel inheritance: Multi-level inheritance is archived when a derived class inherits

another derived class. There is no limit on the number of levels up to which, the multi-level

inheritance is archived in python.

class class1:

<class-suite>

class class2(class1):

<class suite>

class class3(class2):

<class suite>

Inheritance in Python

43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

A simple example of inheritance in Python:

class person:

def __init__(self, fname, lname):

self.fname=fname

self.lname=lname

def printName(self):

print(self.fname, self.lname)

x = person(‘Anuj’, ‘Rastogi’)

x.printName()

class student(person):

pass

y=student(‘Aarti’,’Sharma’)

y.printName()

Inheritance in Python

continued …

44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

So far we have created a child class that inherits the properties and

methods from its parent. Now, we want to add the __init__() function to

the child class

class student(person):

def __init__(self, lname,fname):

When you add the __init__() function to the child class, it will no longer

inherit the parent's __init__() function. The child’s __init__()

function overrides the parent's __init__() function.

To keep the inheritance of the parent's __init__(), add a call to the

parent's __init__()

class student(person):

def __init__(self, lname,fname):

person. __init__(self, lname,fname)

Inheritance in Python

continued …

45

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Python also has a super() function that will make the child class inherit all

the methods and properties from its parent:

class student(person):

def __init__(self, lname, fname):

super(). __init__(lname, fname)

By using the super() function , you do not have to use the name of the

parent element, it will automatically inherit the methods and properties

from its parent.

Add Properties

class student(person):

def __init__(self, lname, fname):

super(). __init__(lname, fname)

self.graduationyear = 2022

graduationyear should be passed to __init__() function

Inheritance in Python

continued …

46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Add Methods

class student(person):

def __init__(self, lname, fname):

super(). __init__(lname, fname)

self.graduationyear = 2022

def welcome(self):

print("Welcome", self.firstname, self.lastname, "to the

class of", self.graduationyear)

If you add a method in the child class with the same name as a function in

the parent class, the inheritance of the parent method will be overridden.

Two built-in functions isinstance() and issubclass() are used to check

inheritances.

Inheritance in Python

continued …

47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Method Overriding

• We can provide some specific implementation of the parent class

method in our child class.

• When the parent class method is defined in the child class with some

specific implementation, then the concept is called method overriding.

• We may need to perform method overriding in the scenario where the

different definition of a parent class method is needed in the child

class.

Inheritance in Python

continued …

48

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

class Bank:

def getroi(self):

return 10;

class SBI(Bank):

def getroi(self):

return 7;

class ICICI(Bank):

def getroi(self):

return 8;

b1 = Bank()

b2 = SBI()

b3 = ICICI()

print("Bank Rate of interest:",b1.getroi());

print("SBI Rate of interest:",b2.getroi());

print("ICICI Rate of interest:",b3.getroi());

Inheritance in Python

continued …

49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The word polymorphism means having many forms. In programming,

polymorphism means same function name (but different signatures) being

used for different types.

Polymorphism is a very important concept in programming. It refers to the

use of a single type entity (method, operator or object) to represent

different types in different scenarios.

Polymorphism and Inheritance

• The child classes in Python also inherit methods and attributes from the parent

class. We can redefine certain methods and attributes specifically to fit the

child class, which is known as Method Overriding.

• Polymorphism allows us to access these overridden methods and attributes

that have the same name as the parent class.

Polymorphism in Python

50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Polymorphism with Class Methods

class India:

def capital(self):

print(‘New Delhi’)

def language(self):

print(‘Hindi, English and other regional languages’)

class USA:

def capital(self):

print(‘Washington, D.C.’)

def language(self):

print(‘English’)

obj_ind=India()

obj_usa=USA()

for country in (obj_ind, obj_usa):

country.capital()

country.language()

Polymorphism in Python

continued…

51

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Built-in polymorphic functions:

print(len(‘BVICAM’))

print(len([‘Python’, ‘Java’, ‘C++’]))

print(len(‘Monday’,’Tuesday’,’Wednesday’,’Thursday’,’Friday’,’Saturday’,’Sunday’))

User defined polymorphic functions :

def add(x,y,z=0):

return x+y+z

print(add(2,3))

print(add(2,3,4))

Polymorphism in Python

continued…

52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Operator Overloading means giving extended meaning beyond their

predefined operational meaning. For example operator + is used to add two

integers as well as join two strings and merge two lists. It is achievable

because ‘+’ operator is overloaded by int class and str class.

• The same built-in operator or function shows different behavior for objects of

different classes, this is called Operator Overloading.

class point:

def __init__(self, x,y):

self.x=x

self.y=y

p1=point(2,3)

p2=point(5,8)

print(p1+p2)

Operator Overloading

53

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• We can change the meaning of an operator in Python depending upon the operands

used.

• When we use an operator on user defined data types then automatically a special

function or magic function associated with that operator is invoked. Changing the

behavior of operator is as simple as changing the behavior of method or function.

• We define methods in your class and operators work according to that behavior defined

in methods. When we use + operator, the magic method __add__ is automatically

invoked in which the operation for + operator is defined. There by changing this magic

method’s code, we can give extra meaning to the + operator.

def __add__(self, other):

x = self.x + other.x

y = self.y + other.y

return point(x,y)

Now try

print(p1+p2)

54

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Binary Operators:

Magic Functions for

Operator Overloading

55

+ __add__(self, other)

– __sub__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

// __floordiv__(self, other)

% __mod__(self, other)

** __pow__(self, other)

>> __rshift__(self, other)

<< __lshift__(self, other)

& __and__(self, other)

| __or__(self, other)

^ __xor__(self, other)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Comparison Operators :

Unary Operators :

Magic Functions for

Operator Overloading

56

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

== __eq__(self, other)

!= __ne__(self, other)

– __neg__(self)

+ __pos__(self)

~ __invert__(self)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Assignment Operators :

Magic Functions for

Operator Overloading

57

-= __isub__(self, other)

+= __iadd__(self, other)

*= __imul__(self, other)

/= __idiv__(self, other)

//= __ifloordiv__(self, other)

%= __imod__(self, other)

**= __ipow__(self, other)

>>= __irshift__(self, other)

<<= __ilshift__(self, other)

&= __iand__(self, other)

|= __ior__(self, other)

^= __ixor__(self, other)

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• A class is called an Abstract class if it contains one or more abstract

methods. An abstract method is a method that is declared, but contains no

implementation. Abstract classes may not be instantiated, and its abstract

methods must be implemented by its subclasses.

• An abstract class can be considered as a blueprint for other classes.

• While we are designing large functional units we use an abstract class. When

we want to provide a common interface for different implementations of a

component, we use an abstract class.

Abstract Classes

58

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

By default, Python does not provide abstract classes. Python comes with

a module that provides the base for defining Abstract Base classes(ABC)

and that module name is abc. abc works by decorating methods of the

base class as abstract and then registering concrete classes as

implementations of the abstract base. A method becomes abstract when

decorated with the keyword @abstractmethod. For Example –

Import abc

Class polygon(abc.ABC)

@abc.abstractmethod

def noofsides(self):

pass

You may also provide class methods and static methods in abstract base

class by decorators @abstractclassmethod and @abstractstatic method

decorators respectively.

How Abstract Base classes

work

59

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

class Triangle(polygon):

def noofsides(self):

print(“I have 3 sides”)

class Pentagon(polygon):

def noofsides(self):

print(“I have 5 sides”)

class Hexagon(polygon):

def noofsides(self):

print(“I have 6 sides”)

R = Triangle()

R.noofsides()

Abstact Class continued…

60

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Thread

In computing, a process is an instance of a computer program that is

being executed. Any process has 3 basic components:

• An executable program.

• The associated data needed by the program (variables, work space,

buffers, etc.)

• The execution context of the program (State of process)

A thread is an entity within a process that can be scheduled for execution.

Also, it is the smallest unit of processing that can be performed in an OS

(Operating System).

In simple words, a thread is a sequence of such instructions within a

program that can be executed independently of other code. For simplicity,

you can assume that a thread is simply a subset of a process!

Threads in Python

61

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

A thread contains all this information in a Thread Control Block (TCB):

• Thread Identifier: Unique id (TID) is assigned to every new thread

• Stack pointer: Points to thread’s stack in the process. Stack contains

the local variables under thread’s scope.

• Program counter: a register which stores the address of the

instruction currently being executed by thread.

• Thread state: can be running, ready, waiting, start or done.

• Thread’s register set: registers assigned to thread for computations.

• Parent process Pointer: A pointer to the Process control block (PCB)

of the process that the thread lives on.

Threads continued…

62

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Consider the diagram below to understand the relation between process and its thread:

Threads continued…

63

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Multiple threads can exist within one process where:

• Each thread contains its own register set and local variables (stored in stack).

• All thread of a process share global variables (stored in heap) and the program code.

Multithreading

64

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Multithreading is defined as the ability of a processor to execute multiple threads

concurrently.

Running several threads is similar to running several different programs

concurrently, but with the following benefits −

• Multiple threads within a process share the same data space with the main

thread and can therefore share information or communicate with each other

more easily than if they were separate processes.

• Threads sometimes called light-weight processes and they do not require

much memory overhead; they are cheaper than processes.

A thread has a beginning, an execution sequence, and a conclusion. It has an

instruction pointer that keeps track of where within its context it is currently

running.

• It can be pre-empted (interrupted)

• It can temporarily be put on hold (also known as sleeping) while other threads

are running - this is called yielding.

Multithreading

continued…

65

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

There are two ways of accessing Python threads. These are by using:

• Thread Module

t = thread.strat_new_thread(function, args [, kwargs])

• Threading module

t = threading.Thread(function, args [, kwargs])

It is to be noted that the 'tread' module has been considered as of lesser

use, and hence users get to use the 'threading' module instead. Another

thing has to keep in mind that the module 'thread' treats the thread as a

function, whereas the 'threading' is implemented as an object.

Multithreading

continued…

66

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

import threading

def print_cube(num):

print(‘Cube = ‘, num * num * num)

def print_square(num):

print(‘Square = ‘, num * num)

If __name__= “__main__” :

t1 = threading.Thread(target=print_square, args=(10,))

t2 = threading.Thread(target=print_cube, args=(10,))

t1.start()

t2.start()

t1.join()

t2.join()

print(“Done!”)

Multithreading

continued…

67

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Consider the diagram below for a better understanding of how this program works:

Multithreading

continued…

68

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

import threading

import os

def task1():

print("Task 1 assigned to thread: ”, threading.current_thread().name)

print(“ID of process running Task 1”, os.getpid())

def task2():

print("Task 2 assigned to thread: ”, threading.current_thread().name)

print(“ID of process running Task 2”, os.getpid())

if __name__= “__main__” :

print(“ID of process running MAIN program: ”, os.getpid())

print(“Main thread name : ”, threading.current_thread().name)

t1= threading.Thread(target=task1, name=‘t1’)

t2=threading.Thread(target=task2,name=‘t2’)

t1.start()

t2.start()

t1.join()

t2.join()

Another Example of

Multithreading

69

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• There are five thread states - new, runnable, running, waiting and dead.

• Among these five Of these five, we will majorly focus on three states - running, waiting

and dead.

• A thread gets its resources in the running state, waits for the resources in the waiting

state; the final release of the resource, if executing and acquired is in the dead state.

• The following Python program with the help of start(), sleep() and join() methods will

show how a thread entered in running, waiting and dead state respectively.

Step 1 − Import the necessary modules, for example : <threading> and <time>

Step 2 − Define a function, which will be called while creating a thread.

Step 3 − We are using the sleep() method of time module to make our thread waiting for say

2 seconds.

Step 4 − Now, we are creating a thread (e.g T1), which takes the argument of the function

defined above.

Step 5 − Now, with the help of the start() function we can start our thread. It will produce the

message, which has been set by us while defining the function.

Step 6 − Now, at last we can kill the thread with the join() method after it finishes its

execution.

Python Program for

Various Thread States

70

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• A daemon thread is a thread that dies whenever the main thread dies,

it is also called a non-blocking thread.

• Usually, the main thread should wait for other threads to finish in order

to quit the program, but if you set the daemon flag, you can let the

thread do its work and forget about it, and when the program quits, it

will be killed automatically.

• For example, you may want to make a thread that watches for log files

in your program, and alert you when a critical error is occurred.

• Usually our main program implicitly waits until all other threads have

completed their work.

• The default setting for a thread is non-daemon. To designate a thread

as a daemon, we call its setDaemon() method with a boolean

argument.

Example: test-Daemon.py

Daemon Thread in Python

71

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

On invoking the join() method, the calling thread gets blocked until the

thread object (on which the thread is called) gets terminated. The thread

objects can terminate under any one of the following conditions:

• Either normally.

• Through an ill-handled exception.

• Till the optional timeout occurs.

Hence the join() method indicates wait till the thread terminates. We can

also specify a timeout value to the join() method. In such a situation the

calling thread may ask the thread to stop by sending a signal through an

event object. The join() method can be called multiple times.

Join() method in Python

72

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

threading.enumerate() returns a list of all Thread objects currently alive.

The list includes daemonic threads, and the main thread.

It excludes terminated threads and threads that have not yet been started.

for t in threading.enumerate():

if t is main_thread:

continue

logging.debug('Name of the thread = %s', t.getName())

For example : test-Enumerate.py

threading.enumerate()

73

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Thread synchronization is defined as a mechanism which ensures that

two or more concurrent threads do not simultaneously execute some

particular program segment known as critical section.

Following issues may arise while implementing concurrent programming

or applying synchronizing primitives:

1. Dead Lock

2. Race condition

In Python, we can implement synchronization by using the following

concepts

• Lock

• RLock

• Semaphore

Thread Synchronization in

Python

74

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Locks are the most fundamental synchronization mechanism provided by

the threading module. We can create Lock object as follows,

l=Lock()

The Lock object can be held by only one thread at a time. If any other

thread wants the same lock then it will have to wait until the other one

releases it. It’s similar to waiting in line to book a train ticket, public

telephone booth etc.

• acquire() method: A Thread can acquire the lock by using acquire()

method

l.acquire()

• release() method: A Thread can release the lock by using release()

method.

l.release()

Examples : Test-Lock.py and Test-Lock1.py

Synchronization By using

Locks in python:

75

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• The standard lock object does not care which thread is currently

holding that lock. If the lock is being held by one thread, and if any

other thread tries to accquire the lock, then it will be blocked, even if it’s

the same thread that is already holding the lock.

• So, if the Thread calls recursive functions or nested access to

resources, then the thread may try to acquire the same lock again and

again, which may result in blocking of our thread. Hence Traditional

Locking mechanism won’t work for executing recursive functions.

Problem with Simple Lock

in Python:

76

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• To overcome the above problem of Simple Lock, we should go for

RLock(Reentrant Lock). Reentrant means the thread can acquire the

same lock again and again. This will block the thread only if the lock is

held by any other thread. Reentrant facility is available only for owner

thread but not for other threads.

• This RLock keeps track of recursion level and hence for every

acquire() there should be a release() call available.

• The number of acquire() calls and release() calls should be matched

then for the lock to be released i.e if there are two accquire calls then

there should be two release calls for the lock to be released. If there is

only one release call for two accquire calls then the lock wont be

released.

Example : test-Rlock()

Synchronization By using

RLock concept in Python:

77

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Difference between Lock

and RLock in Python:

78

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Semaphore provides threads with synchronized access to a limited

number of resources.

• A semaphore is just a variable. The variable reflects the number of

currently available resources. For example, a parking lot with a display

of number of available slots on a specific level of a shopping mall is a

semaphore.

• The value of semaphore cannot go less than zero and greater then the

total number of the available resources.

• The semaphore is associated with two operations –

acquire and release.

• When one of the resources synchronized by a semaphore is

"acquired" by a thread, the value of the semaphore is decremented.

• When one of the resources synchronized by a semaphore is

"released" by a thread the value of the semaphore is incremented.

Synchronization by using

Semaphore in Python:

79

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• The Semaphore class of the Python threading module implements the

concept of semaphore.

• It has a constructor and two methods acquire() and release().

• The acquire() method decreases the semaphore count if the count is

greater than zero. Else it blocks till the count is greater than zero.

• The release() method increases the semaphore count and wakes up

one of the threads waiting on the semaphore.

Way to create an object of Semaphore :

1. object_name.Semaphore()

In this case, by default value of the count variable is 1 due to which only one thread is

allowed to access. It is exactly the same as the Lock concept.

2. object_name.Semaphore(n)

In this case, a Semaphore object can be accessed by n Threads at a time. The

remaining Threads have to wait until releasing the semaphore.

Example : test-Semaphores.py

Semaphores in Python:

80

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Try this :

from threading import *

s=Semaphore(2)

s.acquire()

s.acquire()

s.release()

s.release()

s.release()

s.release()

print("End")

In Normal Semaphore, discussed above, the release method can be called any number of

times to increase the counter, irrespective of the acquire method. Sometimes, the number of

release() calls can exceed

It is valid because in normal semaphore we can call release() any number of times. This may

result in programming errors or may raise confusions. So, it is always recommended to use

Bounded Semaphore which raises an error if the number of release() calls exceeds the

number of acquire() calls. the number of acquire() calls also.

Bounded Semaphore in

Python:

81

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Now try this:

from threading import *

s=BoundedSemaphore(2)

s.acquire()

s.acquire()

s.release()

s.release()

s.release()

s.release()

print("End")

Example: test-semaphores2.py

The major idea of synchronization is to overcome data inconsistency

problems. But the disadvantage of synchronization is it increases waiting

time of threads and creates performance problems. Hence it is

recommended to use synchronization only if the requirement demands.

Bounded Semaphore in

Python:

82

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The Event class object provides a simple mechanism which is used for

communication between threads where one thread signals an event while the

other threads wait for it.

So, when one thread which is intended to produce the signal produces it, then the

waiting thread gets activated.

An internal flag is used by the event object known as the event flag which can be

set as true using the set() method and it can be reset to false using the clear()

method

The wait() method blocks a thread until the event flag for which it is waiting is set

true by any other thread.

There are few useful functions used along with an event object:

1. isSet()

2. set()

3. clear()

4. wait([Timeout])

Thread Synchronization

using Event Object

83

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

isSet Method:

This method returns true if and only if the internal flag is true.

set() Method:

When this method is called for any event object then the internal flag is set to true. And

as soon as set() methos is called for any event all threads waiting for it are awakened.

clear() Method:

This method resets the internal flag to false. Subsequently, threads calling wait() on the

event for which clear() is called, it will block until the internal flag is not true again.

wait([Timeout]) Method:

• When we have to make any thread wait for an event, we can do so by calling this

method on that event which has the internal flag set to false, doing so blocks the thread

until the internal flag is true for the event.

• If the internal flag is true on entry, then the thread will never get blocked. Otherwise, it is

blocked until another thread calls set() to set the flag to true, or until the optional timeout

occurs. The timeout argument specifies a timeout for the operation in seconds.

Example : test-event.py

Thread Synchronization

using Event Object

84

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Error in Python can be of two types i.e. Syntax errors and Exceptions.

Errors are the problems in a program due to which the program will stop

the execution. On the other hand, exceptions are raised when some

internal events occur which changes the normal flow of the program.

Exceptions: Exceptions are raised when the program is syntactically

correct but the code resulted in an error. This error does not stop the

execution of the program, however, it changes the normal flow of the

program.

marks =1000

a=marks / 0

print(a)

Exception Handling

85

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Python provides two very important features to handle any unexpected

error in your Python programs and to add debugging capabilities in them −

• Exception Handling

• Assertions

Python provides a way to handle the exception so that the code can be

executed without any interruption. If we do not handle the exception, the

interpreter doesn't execute all the code that exists after the exception.

Python has many built-in exceptions that enable our program to run

without interruption and give the output.

Exception Handling

86

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Common Exceptions

Python provides the number of built-in exceptions, but here we are

describing the common standard exceptions. A list of common exceptions

that can be thrown from a standard Python program is given below.

• ZeroDivisionError: Occurs when a number is divided by zero.

• NameError: It occurs when a name is not found. It may be local or global.

• IndentationError: If incorrect indentation is given.

• IOError: It occurs when Input Output operation fails.

• EOFError: It occurs when the end of the file is reached, and yet operations are being

performed.

• ArithmeticError: Base class for all errors that occur for numeric calculation.

• OverflowError: Raised when a calculation exceeds maximum limit for a numeric type.

• IndexError: Raised when an index is not found in a sequence.

• SyntaxError: Raised when there is an error in Python syntax.

• ValueError: Raised when the built-in function for a data type has the valid type of

arguments, but the arguments have invalid values specified.

Exception Handling

87

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Handling an exception

• If you have some suspicious code that may raise an exception, you can defend your

program by placing the suspicious code in a try: block. After the try: block, include

an except: statement, followed by a block of code which handles the problem as

elegantly as possible.

Syntax

Here is simple syntax of try....except...else blocks −

try:

You do your operations here;

......................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

Exception Handling

88

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Here are few important points about the syntax −

• A single try statement can have multiple except statements. This is useful when the try

block contains statements that may throw different types of exceptions.

• You can also provide a generic except clause, which handles any exception.

• After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception.

• The else-block is a good place for code that does not need the try: block's protection.

try:

fh = open("testfile", "w")

fh.write("This is my test file for exception handling!!")

except IOError:

print "Error: can\'t find file or read data"

else:

print "Written content in the file successfully"

fh.close()

Exception Handling

89

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

You can also use the except statement with no exceptions defined as follows −

try:

You do your operations here;

......................

except:

If there is any exception, then execute this block.

......................

else:

If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur. Using this kind of

try-except statement is not considered a good programming practice though, because it

catches all exceptions but does not make the programmer identify the root cause of the

problem that may occur.

The except Clause with No

Exceptions

90

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

try:

You do your operations here;

......................

Except(<Exception 1>, <Exception 2>, <Exception 3>):

Block of statements

......................

else:

If there is no exception then execute this block.

The except Clause with

Multiple Exceptions

91

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Python provides the optional finally statement, which is used with the try statement. It is

executed no matter what exception occurs and used to release the external resource. The

finally block provides a guarantee of the execution.

try:

fileptr = open("file2.txt","r")

try:

fileptr.write("Hi I am good")

finally:

fileptr.close()

print("file closed")

except:

print("Error")

The try-finally Clause

92

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• An exception can be raised forcefully by using the raise clause in Python. It is useful in

in that scenario where we need to raise an exception to stop the execution of the

program.

• For example, there is a program that requires 2GB memory for execution, and if the

program tries to occupy 2GB of memory, then we can raise an exception to stop the

execution of the program.

• The syntax to use the raise statement is given below.

Raise Exception_class, <value>

Points to remember

• To raise an exception, the raise statement is used. The exception class name follows it.

• An exception can be provided with a value that can be given in the parenthesis.

• To access the value "as" keyword is used. "e" is used as a reference variable which

stores the value of the exception.

• We can pass the value to an exception to specify the exception type.

Raising exceptions

93

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

try:

age = int(input("Enter the age:"))

if(age<18):

raise ValueError

else:

print("the age is valid")

except ValueError:

print("The age is not valid")

Raise the exception with message

try:

num = int(input("Enter a positive integer: "))

if(num <= 0):

raise ValueError("That is a negative number!")

except ValueError as e:

print(e)

Raising exceptions

94

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

The Python allows us to create our exceptions that can be raised from the program and

caught using the except clause. However, we suggest you read this section after visiting the

Python object and classes.

class ErrorInCode(Exception):

def __init__(self, data):

self.data = data

def __str__(self):

return repr(self.data)

try:

raise ErrorInCode(2000)

except ErrorInCode as ae:

print("Received error:", ae.data)

Custom Exception

95

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• An assertion is a sanity-check that you can turn on or turn off when you are done with

your testing of the program.

• The assert keyword is used when debugging code.

• The assert keyword lets you test if a condition in your code returns True, if not, the

program will raise an AssertionError.

• Assertions are carried out by the assert statement, the newest keyword to Python,

introduced in version 1.5.

• Programmers often place assertions at the start of a function to check for valid input, and

after a function call to check for valid output.

The assert Statement

• When it encounters an assert statement, Python evaluates the accompanying

expression, which is hopefully true. If the expression is false, Python raises

an AssertionError exception.

• The syntax for assert is −

assert Expression[, Argument]

Assertions in Python

96

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

Here is a function that converts a temperature from degrees Kelvin to degrees Fahrenheit.

Since zero degrees Kelvin is as cold as it gets, the function bails out if it sees a negative

temperature −

def KelvinToFahrenheit(Temperature):

assert (Temperature >= 0),"Colder than absolute zero!"

return ((Temperature-273)*1.8)+32

print KelvinToFahrenheit(273)

print int(KelvinToFahrenheit(505.78))

print KelvinToFahrenheit(-5)

Assertions in Python

97

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• All exception classes are derived from the BaseException class.

• The BaseException is the base class of all other exceptions. User

defined classes cannot be directly derived from this class, to derive

user defied class, we need to use Exception class.

Python Exception Hierarchy.docx

Exception Class Hierarchy

in Python:

98

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• Composition is an object oriented design concept that models a has

a relationship. In composition, a class known as composite contains an object

of another class known to as component. In other words, a composite

class has a component of another class.

• Composition allows composite classes to reuse the implementation of the

components it contains. The composite class doesn’t inherit the component

class interface, but it can leverage its implementation.

• The composition relation between two classes is considered loosely coupled.

That means that changes to the component class rarely affect the composite

class, and changes to the composite class never affect the component class.

• This provides better adaptability to change and allows applications to introduce

new requirements without affecting existing code.

• When looking at two competing software designs, one based on inheritance

and another based on composition, the composition solution usually is the

most flexible.

• Example : test-Composition.py

Composition in Python

99

Python Exception Hierarchy.docx

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

A process that is repeated more than one time by applying the same logic

is called an Iteration. In programming languages like python, a loop is

created with few conditions to perform iteration till it exceeds the limit. If

the loop is executed 6 times continuously, then we could say the particular

block has iterated 6 times.

a = [0, 5, 10, 15, 20]

for i in a:

if i % 2 == 0:

print(str(i)+' is an Even Number')

else:

print(str(i)+' is an Odd Number')

Iterators in Python

100

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• An iterator is an object which contains a countable number of values and it is used to

iterate over iterable objects like list, tuples, sets, etc.

• Iterators are implemented using a class and a local variable for iterating is not required

here, It follows lazy evaluation where the evaluation of the expression will be on hold and

stored in the memory until the item is called specifically which helps us to avoid repeated

evaluation.

• As lazy evaluation is implemented, it requires only 1 memory location to process the

value and when we are using a large dataset then, wastage of RAM space will be

reduced the need to load the entire dataset at the same time will not be there.

How to use an iterator-

• iter() keyword is used to create an iterator containing an iterable object.

• next() keyword is used to call the next element in the iterable object.

• After the iterable object is completed, to use them again reassign them to the same

object.

iter_list = iter(['Java', 'Python', 'C++'])

print(next(iter_list))

print(next(iter_list))

Iterators in Python

101

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit III

• It is another way of creating iterators in a simple way where it uses the

keyword “yield” instead of returning it in a defined function.

• Generators are implemented using a function.

• Just as iterators, generators also follow lazy evaluation.

• The yield function returns the data without affecting or exiting the

function. It will return a sequence of data in an iterable format where

we need to iterate over the sequence to use the data as they won’t

store the entire sequence in the memory.

Example : test-Generator.py

Generators in Python

102

