
15-02-2024

1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.1

UNIT I

Full Stack Development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.2

Learning Resources

• Books

• A. Banks and E. Porcello, “Learning React: Functional Web

Development with React and Redux”, O’Reilly, 1st Edition,

2017.

• Web Links (Strictly Referred):

• https://reactjs.org/

• https://nodejs.org/

• https://expressjs.com/

• https://developer.mozilla.org

• https://react-redux.js.org/

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.3

Learning Objectives

• The core concepts of both the frontend and backend programming.

• The latest web development technologies.

• Maintaining data using NoSQL data bases.

• Complete web application development process

https://reactjs.org/
https://nodejs.org/
https://expressjs.com/
https://developer.mozilla.org/
https://react-redux.js.org/

15-02-2024

2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.4

Course Outcome

• CO1: Relate the basics of Javascript (JS) and ReactJS

• CO2: Apply the concepts of props and State Management in React JS

• CO3: Examine Redux and Router with React JS

• CO4: Appraise Node JS environment and modular development

• CO5: Develop full stack applications using MongoDB

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.5

Overview

UNIT-1
•Introduction to React

•Obstacles and Roadblocks

•React Library, React Developer tools

•Introduction to ES6

•Declaring variables in ES6, Arrow Functions, ES6 Objects and Arrays, ES6

modules

•Introduction to AJAX

•Pure React

•Page setup, virtual DOM

•React Element, React DOM, Constructing Elements with Data, React Components,

DOM Rendering, First React Application using Create React App, React with JSX,

React Element as JSX

•Props, State and Component Tree

•Property Validation, Validating Props with createClass, Default Props, ES6 Classes

and stateless functional components, React state management, State within the

component tree, state vs. props, Forms in React

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.6

Overview (cont..)

UNIT-2
•Enhancing Components

•Component Lifecycle, JavaScript library integration

•Higher-Order Components, Managing state outside the react

•Introduction to Flux

•Redux and Router

•State, Actions, Reducers, The Store

•Middleware

•React Redux

•React Router, Incorporating the router, Nesting Router, Router parameters

•JSON

•Objects

•Schema

•REST API

•WRML, REST API Design

•Identifier Design with URIs, Interaction Design with HTTP, Representation Design,

Caching, Security

15-02-2024

3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.7

Overview (cont..)

UNIT-3
•Introduction to Angular

•Angular architecture; introduction to components, component interaction and styles;

templates, interpolation and directives; forms, user input, form validations; data

binding and pipes; retrieving data using HTTP; Angular modules

•Node.js

• Introduction, Features, Node.js Process Model

•Environment Setup: Local Environment Setup, The Node.js Runtime, Installation of

Node.js

•Node.js Modules: Functions, Buffer, Module, Modules Types

•Node Package Manager: Installing Modules using NPM, Global vs Local Installation,

Attributes of Package.js on, Updating packages, Mobile-first paradigm, Using twitter

bootstrap on the notes application, Flexbox and CSS Grids

•File System: Synchronous vs Asynchronous, File operations

•Web Module: Creating Web Server, Web Application Architecture, Sending Requests,

Handling http requests

•Express Framework: Overview, Installing Express, Request / Response Method, Cookies

Management

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.8

Overview (cont..)

UNIT-4

•MongoDB:

•Introduction to NoSQL

•Understanding MongoDB datatypes

•Building MongoDB Environment (premise and cloud based)

•Administering Databases and User accounts

•Configuring Access Control, Managing Collections

•connecting to MongoDB from Node.js

•Accessing and Manipulating Databases and Collections

•Manipulating MongoDB documents from Node.js

•Understanding Query objects,

•sorting and limiting result sets

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.9

Component Lifecycles

• Mounting Lifecycle

– invoked when a component is mounted or unmounted

– these methods allow you to initially set up state, make API calls, start and stop

timers, manipulate the rendered DOM, initialize third-party libraries

15-02-2024

4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.10

Component Lifecycles

• Mounting Lifecycle

– constructor(): If you don’t initialize state and you don’t bind methods, you don’t

need to implement a constructor for your React component.

– componentWillMount(): incokes before the render().

– getDerivedStateFromProps(): invoked right before calling the render method

• return an object to update the state, or null to update nothing

– render()

– componentDidMount(): invoked immediately after a component is mounted

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.11

Component Lifecycles

• Update Component Lifecycle

– componentWillReceiveProps(nextProps): invoked if new properties have been

passed to the component

– getDerivedStateFromProps():invoked right before calling the render method

– shouldComponentUpdate(): React know if a component’s output is not affected

by the current change in state or props

– render()

– getSnapshotBeforeUpdate(): invoked right before the most recently rendered

output is committed to e.g. the DOM

• It enables your component to capture some information from the DOM (e.g. scroll

position) before it is potentially changed

– componentWillUpdate(nextProps, nextState): Invoked just before the

component updates

– componentDidUpdate(prevProps, prevState): invoked immediately after

updating occurs

• This method is not called for the initial render

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.12

Component Lifecycles

• Unmounting Lifecycle

– componentWillUnmount(): is invoked immediately before a component is

unmounted and destroyed

15-02-2024

5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.13

JavaScript Library Integration

• React

– simply a library for creating views

– Fetch

– D3 Timeline

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.14

JavaScript Library Integration

• Making Requests with Fetch

– Fetch is a polyfill created by the WHATWG group

• allows us to easily make API calls using promises

– npm install isomorphic-fetch –save

– component lifecycle functions provide us a place to integrate JavaScript

– they are where we will make an API call

– handle latency, the delay that the user experiences while waiting for a response

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.15

JavaScript Library Integration

• Incorporating a D3 Timeline

– Data Driven Documents (D3) is a JavaScript framework that can be used to

construct data visualizations for the browser

– D3 is functional

– npm install d3 --save

– D3 takes data, typically arrays of objects, and develops visualizations based

upon that data

Learning React: Functional Web Development with React and Redux Page No. 160

15-02-2024

6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.16

Higher-Order Components

• a function that takes a React component as an argument and returns

another React component

• best way to reuse functionality across React components

• The parent component can hold state or contain functionality that can

be passed down to the composed component as properties

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.17

Higher-Order Components

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.18

Managing State Outside of React

• benefits of managing state outside of React is:

– reduce the need for many, if any, class components

– state full component

– you can isolate class functionality to HOCs

– Stateless functional components are easier to understand and easier to test

– create your own system for managing state

– manage state using global variables or localStorage and plain JavaScript

– Managing state outside of React simply means not using React state or setState

in your applications

Learning React: Functional Web Development with React and Redux Page No. 173

15-02-2024

7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.19

Flux

• Flux is a design pattern developed at Facebook that was designed to

keep data flowing in one direction

• Before Flux, MVC design pattern was used

• a stateless functional component is a pure function

• const Countdown = ({count}) => <h1>{count}</h1>

• application state data is managed outside of React components in

stores

• Stores hold and change the data, and are the only thing that can update

a view in Flux

• If a user were to interact with a web page an action would be created

to represent the user’s request

• Actions are dispatched using a central control component called the

dispatcher

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.20

Flux

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.21

Views

• a React stateless component

• Flux will manage application state

• a lifecycle function will not need class component

15-02-2024

8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.22

Actions and Action Creators

• Actions provide the instructions and data that the store will use to

modify the state.

• Action creators are functions that can be used to abstract away the

nitty-gritty details required to build an action.

• Actions themselves are objects that at minimum contain a type field.

• The action type is typically an uppercase string that describes the

action.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.23

Dispatcher

• dispatcher takes the action, packages it with some information about

where the action was generated and sends it on to the appropriate store

or stores that will handle the action

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.24

Stores

• Stores are objects that hold the application’s logic and state data

• Stores are similar to models in the MVC pattern

– stores are not restricted to managing data in a single object

• Current state data can be obtained from a store via properties

• A store will handle actions by type and change their data accordingly

15-02-2024

9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.25

State

• application state should be stored in a single immutable object

• Immutable means this state object doesn’t change

• a single source of truth

• managing the state: the Redux store.

• Redux object stores information about the all components state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.26

State

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.27

State

15-02-2024

10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.28

Actions

• Actions provide: instructions about what should change in the

application state along with the necessary data to make those

changes

• Actions are the only way to update the state of a Redux application

• Actions provide us with instructions about what should change

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.29

Action Payload Data

• Most state changes also require some data called payload.

– Which record should I remove?

– What new information should I provide in a new record?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.30

Reducer

• Redux achieves modularity via functions

• Functions are used to update parts of the state tree. These

functions are called reducers

• Reducers are functions that take the current state along with an

action as arguments and use them to create and return a new state

• Reducers are designed to update specific parts of the state tree,

either leaves or branches.

15-02-2024

11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.31

The Store

• the store is what holds the application’s state data and handles all

state updates

• Flux design pattern allows for many stores that each focus on a

specific set of data, Redux only has one store

• The store handles state updates by passing the current state and

action through a single reducer

• create a store

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.32

The Store

• Subscribing to Stores

• Saving to localStorage

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.33

Middleware

• middleware serves as the glue between two different layers

• Middleware consists of a series of functions that are executed in a

row in the process of dispatching an action

15-02-2024

12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.34

React Redux

• Explicitly Passing the Store

This is the ./index.js file. In this file, we
create the store with the storeFactory
and
render the App component into the
document

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.35

React Redux

• Explicitly Passing the Store

passed the store to the App

continue to pass it down to

the child components that need it

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.36

React Redux

• Passing the Store via Context

For More details : https://reactjs.org/docs/context.html

15-02-2024

13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.37

React Redux

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.38

React Redux

• STATE: Representing the global state of the App

• ACTION: Set of instruction, like handlers, it has two types of

parameters {type,payload}

• REDUCERS: are functions, accept the current state + action and

returns a new state.

• STORE: store contains reducers and you may access the global

state of an app

• DISPATCH: the only way to update the state by calling

store.dispatch.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.39

React Redux

Event Handler

Rs. 1000

StoreDispatchDispatch

DepositDeposit

WithdrawWithdraw

Reducers

R1

R2

StateState
Click

Event

:deposi

t

Action:

type:Deposit,

payload:1000

0

15-02-2024

14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.40

React Redux

• Presentational Components

– Presentational components are

components that only render UI

elements

– Are concerned with how things

look

– Often allow containment via
this.props.children

– Have no dependencies on the

rest of the app, such as Flux

actions or stores

– Receive data and callbacks

exclusively via props

• Container Components

– Container components are

components that connect

presentational components to

the data

– Are concerned with how things

work

– Provide the data and behavior to

presentational or other container

components

– Call Flux actions and provide

these as callbacks to the

presentational components

– Are often stateful, as they tend

to serve as data sources.

[Source: https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0]

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.41

React Redux

• The React Redux Provider

– ease the complexity involved with implicitly passing the store via context

– Dan Abramov, the creator of Redux

– React Redux reduces your code’s complexity and may help you build apps a

bit faster

– npm install react-redux --save

– react-redux supplies us with a component that we can use to set up our store

in the context, the provider

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.42

React Redux

15-02-2024

15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.43

React Router

• Routing is the process of defining endpoints for your client’s

requests

• Incorporating the Router

– npm install react-router-dom --save

– <HashRouter> is changed to <BrowserRouter> and child component is

<Routes>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.44

React Router

• Router Properties

• <Link to>

• <Redirect to>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.45

Nesting Routes

• Using a Page Template

• Subsections and Submenus

• Using redirects

15-02-2024

16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.46

Router Parameters

• Adding Color Details Page

• Multiple Parameters : Multiple parameters can be created and

accessed on the same parameters object

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.47

JavaScript Object Notation (JSON)

• JavaScript Object Notation (JSON) is a standard text-based format

for representing structured data based on JavaScript object syntax

• JSON is a text-based data format following JavaScript object

syntax

• JSON structure: Key value pair

• Arrays as JSON

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.48

JavaScript Object Notation (JSON)

• JSON is a syntax for

– serializing objects,

– arrays,

– numbers,

– strings,

– booleans,

– null

• It is based upon JavaScript syntax but is distinct from it

• JSON.parse()

• JSON.stringify()

15-02-2024

17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.49

JavaScript Object Notation (JSON)

• Object basics

– An object is a collection of related data and/or functionality

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.50

JavaScript Object Notation (JSON)

• Object basics

– An object is a collection of related data and/or functionality

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.51

JavaScript Object Notation (JSON)

• ‘this’

– The this keyword refers to the current object the code is being written inside

15-02-2024

18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.52

JavaScript Object Notation (JSON)

• constructor

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.53

JavaScript Object Notation (JSON)

• JSON Schema

• https://rjsf-team.github.io/react-jsonschema-form/

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.54

REST API

• REpresentational State Transfer(REST) Application Programming

Interfaces (API)

• Web services are purpose-built web servers that support the needs

of a site or any other application

• Client programs use APIs to communicate with web services

https://rjsf-team.github.io/react-jsonschema-form/

15-02-2024

19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.55

REST API Design

• Designing a REST API must include:

– When should URI path segments be named with plural nouns?

– Which request method should be used to update resource state?

– How do I map non-CRUD operations to my URIs?

– What is the appropriate HTTP response status code for a given scenario?

– How can I manage the versions of a resource’s state representations?

– How should I structure a hyperlink in JSON?

• Web Resource Modeling Language (WRML)

– assist with the design and implementation of REST APIs

– originated as a resource model diagramming technique

– uses a set of basic shapes to represent each of the resource archetypes

– WRML increased with the creation of the application/wrml media type

– We have already discussed the structure of JSON Objects

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.56

Identifier Design with URIs

• URIs

– REST APIs use Uniform Resource Identifiers (URIs) to address resources

• URI Format

– URI = scheme "://" authority "/" path ["?" query] ["#" fragment]

• Rule: Forward slash separator (/) must be used to indicate a

hierarchical relationship

• Rule: A trailing forward slash (/) should not be included in URIs

• Rule: Hyphens (-) should be used to improve the readability of

URIs

• Rule: Underscores (_) should not be used in URIs

• Rule: Lowercase letters should be preferred in URI paths

• Rule: File extensions should not be included in URIs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.57

Identifier Design with URIs

• URI Authority Design

• Rule: Consistent subdomain names should be used for your APIs

– http://api.soccer.restapi.org

• Rule: Consistent subdomain names should be used for your client

develop portal

– http://developer.soccer.restapi.org

15-02-2024

20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.58

Identifier Design with URIs

• Resource Modeling

– http://api.soccer.restapi.org/leagues/seattle/teams

– http://api.soccer.restapi.org/leagues/seattle

– http://api.soccer.restapi.org/leagues

– http://api.soccer.restapi.org

• Resource Archetypes

– Document: A document resource is a singular concept that is akin to an

object instance or database record

– Collection: A collection resource is a server-managed directory of resources

– Store: A store is a client-managed resource repository

– Controller: controller resource models a procedural concept

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.59

Identifier Design with URIs

• URI Query Design

– URI = scheme "://" authority "/" path ["?" query] ["#" fragment]

• Rule: The query component of a URI may be used to filter

collections or stores

• Rule: The query component of a URI should be used to paginate

collection or store results

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.60

Interaction Design with HTTP

• HTTP/1.1:

– REST APIs embrace all aspects of HTTP/1.1 including its

• request methods, response codes, and message headers

• Request Methods

– Rule: GET and POST must not be used to tunnel other request methods

– Rule: GET must be used to retrieve a representation of a resource

– Rule: HEAD should be used to retrieve response headers

– Rule: PUT must be used to both insert and update a stored resource

– Rule: PUT must be used to update mutable resources

– Rule: POST must be used to create a new resource in a collection

– Rule: POST must be used to execute controllers

– Rule: DELETE must be used to remove a resource from its parent

– Rule: OPTIONS should be used to retrieve metadata that describes a

resource’s available interactions

15-02-2024

21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.61

Interaction Design with HTTP

• Response Status Codes:

• 1xx: Informational Communicates transfer protocol-level

information.

• 2xx: Success Indicates that the client’s request was accepted

successfully.

• 3xx: Redirection Indicates that the client must take some

additional action in order to complete their request.

• 4xx: Client Error This category of error status codes points the

finger at clients.

• 5xx: Server Error The server takes responsibility for these error

status codes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.62

Interaction Design with HTTP

• Response Status Codes:

– Rule: 200 (“OK”) should be used to indicate nonspecific success

– Rule: 200 (“OK”) must not be used to communicate errors in the response body

– Rule: 201 (“Created”) must be used to indicate successful resource creation

– Rule: 202 (“Accepted”) must be used to indicate successful start of an

asynchronous action

– Rule: 204 (“No Content”) should be used when the response body is

intentionally empty

– Rule: 301 (“Moved Permanently”) should be used to relocate resources

– Rule: 302 (“Found”) should not be used

– Rule: 303 (“See Other”) should be used to refer the client to a different URI

– Rule: 304 (“Not Modified”) should be used to preserve bandwidth

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.63

Interaction Design with HTTP

• Response Status Codes:

– Rule: 307 (“Temporary Redirect”) should be used to tell clients to resubmit the

request to another URI

– Rule: 400 (“Bad Request”) may be used to indicate nonspecific failure

– Rule: 401 (“Unauthorized”) must be used when there is a problem with the

client’s credentials

– Rule: 403 (“Forbidden”) should be used to forbid access regardless of

authorization state

– Rule: 404 (“Not Found”) must be used when a client’s URI cannot be mapped

to a resource

– Rule: 405 (“Method Not Allowed”) must be used when the HTTP method is not

supported

– Rule: 500 (“Internal Server Error”) should be used to indicate API malfunction

15-02-2024

22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.64

Representation Design

• Message Body Format:

– Rule: JSON should be supported for resource representation

– Rule: JSON must be well-formed

– Rule: XML and other formats may optionally be used for resource

representation

– Rule: Additional envelopes must not be created

• Hypermedia Representation

– Rule: A consistent form should be used to represent links

– Rule: A consistent form should be used to represent link relations

– Rule: A consistent form should be used to advertise links

– Rule: Minimize the number of advertised “entry point” API URIs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.65

Representation Design

• Media Type Representation:

– Rule: A consistent form should be used to represent media type formats

– Rule: A consistent form should be used to represent media type schemas

• Schema Representation

• Field Representation

• Constraint Representation

• Link Formula Representation

• Document Schema Representation

• Container Schema Representation

• Collection Schema Representation

• Store Schema Representation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.66

Representation Design

• Error Representation:

– Rule: A consistent form should be used to represent errors

– Rule: A consistent form should be used to represent error responses

– Rule: Consistent error types should be used for common error conditions

15-02-2024

23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.67

Cache

• Caching is one of web architecture’s most important constraints.

• The cache constraints instruct a web server to declare the cacheability

of each response’s data.

• Caching response data can help to

– reduce client-perceived latency,

– increase the overall availability and reliability of an application, and

– control a web server’s load.

• In a word, caching reduces the overall cost of the Web.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita U1.68

Security

• Rule: OAuth may be used to protect resources

• Rule: API management solutions may be used to protect resources

