
Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

Operating Systems with Linux

(MCA-105)

Unit – 4

by

Dr. Sunil Pratap Singh
(Associate Professor, BVICAM, New Delhi)

2023

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

File

• A file is a collection of related data stored on mass storage (e.g., disk or

tape).

 The data is subdivided into records (e.g., student information).

 Each record contains a number of fields (e.g., roll number, name).

 One (or more) field is the key field (e.g., roll number).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

File Organizations

• A file organization refers to the way records are arranged on a storage

device.

• How best the files be arranged for easy of access?

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

Sequential Files

• A sequential file is one in which records can only be accessed one after

another from beginning to end.

• This file organization is the simplest way to store and retrieve records

of a file.

• In this file, data records are stored in some specific sequence, e.g.,

order of arrival, value of key field, etc.

001 Manoj 22 002 Aman 21 003 Mukesh 21

Record 1 Record 2 Record 3

Key Key Key

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

Sequential Files

• The records of a sequential file cannot be accessed at random, i.e., to

access the nth record, one must traverse the preceding (n-1) records.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

Sequential File Organization

• In sequential file organization, the actual storage of records might or

might not be sequential:

 On a tape, it usually is.

 On a disk, it might be distributed across sectors and the operating system

would use a linked list of sectors to provide the illusion of sequentially.

• Editors and compilers usually access files in this fashion.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

Sequential File Organization

• Advantages

 Easy to handle

 Involves no overhead

 Can be stored on tapes as well as disks

• Disadvantages

 Records can only be accessed in sequence

 Time consuming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

Indexed File

• To access a record in a file randomly, we need to know the address of

the record.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

Indexed File: Logical View

• An indexed file is made of a data file

(also known as relative file), which is a

sequential file, and an index.

• The index itself is a very small file with

only two fields: the key of the

sequential file and the address of the

corresponding record on the disk.

• The index is sorted based on the key

values of the data files.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

Indexed File: Accessing a Record

• Accessing a record in the file requires following steps:

 The entire index file is loaded into main memory (the file is small and uses

little memory).

 The index entries are searched, using an efficient search algorithm such as

a binary search, to find the desired key.

 The address of the record is retrieved.

 Using the address, the data record is retrieved and passed to the user.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

Inverted File

• One of the advantages of indexed files is that we can have more than

one index, each with a different key.

• This type of indexed file is usually called an inverted file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

Direct File (Hashed File)

• A hashed file uses a mathematical function to map the key to the

address.

• The user gives the key, the function maps the key to the address and

passes it to the operating system, and the record is retrieved.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13

Process of Working in Direct File (Hashed File)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14

Text File versus Binary File

• A file stored on a storage device is a sequence of bits that can be

interpreted by an application program as a text file or a binary file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15

Text File

• A text file is a file of characters.

• It cannot contain integers, floating-point numbers, or any other data

structures in their internal memory format.

 To store these data types, they must be converted to their character

equivalent formats.

• Example: Character file sent to printer.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16

Binary File

• A binary file is a collection of data stored in the internal format of the

computer.

• Unlike text files, binary files contain data that is meaningful only if it is

properly interpreted by a program.

• If the data is textual, one byte is used to represent one character.

• If the data is numeric, two or more bytes are considered for a data

item.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17

File System

• The file system consists of two distinct parts:

 A collection of files (each storing related data)

 A directory structure (which organizes and provides information about all the

files in the system.

• Files are mapped by the operating system onto physical devices.

 These storage devices are usually nonvolatile, so the contents are persistent

through power failures and system reboots.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18

File Attributes

• A file’s attributes vary from one operating system to another but typically

consist of these:

 Name - The symbolic file name is the only information kept in human-readable form.

 Identifier - This unique tag, usually a number, identifies the file within the file

system; it is the non-human-readable name for the file.

 Type - This information is needed for systems that support different types of files.

 Location - This information is a pointer to a device and to the location of the file on

that device.

 Size - The current size of the file.

 Protection - Access-control information determines who can do reading, writing,

executing, and so on.

 Time, date, and user identification - This information may be kept for creation, last

modification, and last use.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19

File Attributes (contd…)

• The information about all files is kept in the directory structure, which also

resides on secondary storage.

• Typically, a directory entry consists of the file’s name and its unique identifier.

• The identifier, in turn, locates the other file attributes.

• It may take more than a kilobyte to record this information for each file.

• In a system with many files, the size of the directory itself may be megabytes.

• Directories, like files, must be nonvolatile, they must be stored on the device

and brought into memory, as needed.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20

File Operations

• Creating a File

 Two steps are necessary to create a file.

 First, space in the file system must be found for the file.

 Second, an entry for the new file must be made in the directory.

• Writing a File

 To write a file, we make a system call specifying both the name of the file and the

information to be written to the file.

 Given the name of the file, the system searches the directory to find the file’s

location.

 The system must keep a write pointer to the location in the file where the next write

is to take place.

 The write pointer must be updated whenever a write occurs.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21

File Operations (contd…)

• Reading a File

 To read from a file, we use a system call that specifies the name of the file and

where (in memory) the next block of the file should be put.

 The directory is searched for the associated entry, and the system needs to keep a

read pointer to the location in the file where the next read is to take place.

 Once the read has taken place, the read pointer is updated.

 Because a process is usually either reading from or writing to a file, the current

operation location can be kept as a per-process current file-position pointer.

 Both the read and write operations use this same pointer, saving space and reducing

system complexity.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22

File Operations (contd…)

• Repositioning within a File

 The directory is searched for the appropriate entry, and the current-file-

position pointer is repositioned to a given value.

 Repositioning within a file need not involve any actual I/O.

 This file operation is also known as a file seek.

• Deleting a File

 To delete a file, we search the directory for the named file.

 Having found the associated directory entry, we release all file space, so that

it can be reused by other files, and erase the directory entry.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23

File Operations (contd…)

• Truncating a File

 The user may want to erase the contents of a file but keep its attributes.

 Rather than forcing the user to delete the file and then recreate it, this

function allows all attributes to remain unchanged — except for file length —

but lets the file be reset to length zero and its file space released.

• Other Operations - Appending new Information to the end of an Existing

File, Renaming an Existing File

• The operating system keeps a small table, called the open-file table, containing

information about all open files. When a file operation is requested, the file is specified

via an index into this table, so no searching is required. When the file is no longer being

actively used, it is closed by the process, and the operating system removes its entry

from the open-file table.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24

Directory and Disk Structure

• Files are stored on random-access storage devices, including hard disks,

optical disks, and solid state (memory-based) disks.

• A storage device can be used in its entirety for a file system. It can also be

subdivided for finer-grained control.

 For example, a disk can be partitioned into quarters, and each quarter can

hold a file system.

 Storage devices can also be collected together into RAID sets that provide

protection from the failure of a single disk.

 Sometimes, disks are subdivided and also collected into RAID sets.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25

Directory and Disk Structure (contd…)

• Partitions are also known as slices or minidisks.

• A file system can be created on each of these parts of the disk.

• Any entity containing a file system is generally known as a volume.

• The volume may be a subset of a device, a whole device, or multiple

devices linked together into a RAID set.

• Each volume that contains a file system must also contain information

about the files in the system.

 This information is kept in entries in a device directory or volume table of contents.

 The device directory (more commonly known simply as that directory) records

information—such as name, location, size, and type—for all files on that volume.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26

Directory and Disk Structure (contd…)

File-System Organization

Computer systems may have zero or more file systems, and the file systems maybe of varying types.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27

Directory Structure

• The directory can be viewed as a symbol table that translates file names into

their directory entries.

• Various operations such as: search for a file, create a file, delete a file, list

directory, renaming a file, traversing the file system, etc. are performed on a

directory

• The most common schemes for defining the logical structure of directory

includes:

 Single-Level Directory

 Two-Level Directory

 Tree-Structured Directories

 Acyclic-Graph Directories

 General Graph Directory

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28

Single-Level Directory

• It is the simplest directory structure.

• All files are contained in the same directory, which is easy to support and

understand.

• This approach has limitations when the number of files increases or when the

system has more than one user.

 If two users call their data file “test”, then the unique-name rule is violated.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29

Two-Level Directory

• In the two-level directory structure, each user has his own user file directory.

 In the two-level directory structure, each user has his own User File Directory (UFD).

 The UFDs have similar structures, but each lists only the files of a single user.

 When a user job starts or a user logs in, the system’s Master File Directory (MFD) is

searched.

 The MFD is indexed by user name or account number, and each entry points to the

UFD for that user

• This structure effectively isolates one user from another.

• Isolation is an advantage when the users are completely independent but is a

disadvantage when the users want to cooperate on some task and to access

one another’s files.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30

Two-Level Directory (contd…)

• Programs provided as part of the system—loaders, assemblers, compilers, utility, routines,
libraries, and so on—are generally defined as files.

• As the directory system is defined presently, this file name would be searched for in the
current UFD.

• One solution would be to copy the system files into each UFD. However, copying all the
system files would waste an enormous amount of space.

• Solution – A special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first searches the
local UFD.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31

Tree-Structured Directory

• A generalization of Two-Level Directory structure is to extend the directory

structure to a tree of arbitrary height.

• This generalization allows users to create their own subdirectories and to

organize their files accordingly.

• A tree is the most common directory structure.

• The tree has a root directory, and every file in the system has a unique path

name.

• A directory (or subdirectory) contains a set of files or subdirectories.

• A directory is simply another file, but it is treated in a special way.

• One bit in each directory entry defines the entry as a file (0) or as a subdirectory

(1).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32

Tree-Structured Directory (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33

Acyclic-Graph Directory

 An acyclic graph allows

directories to share

subdirectories and files.

 The same file or subdirectory

may be in two different

directories.

 The acyclic graph is a natural

generalization of the tree-

structured directory scheme.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34

Directory Implementation

• Linear List

 A linear list of file names is maintained with pointers to the data blocks.

 This method is simple to program but time-consuming to execute.

o To create a new file, we must first search the directory to be sure that no

existing file has the same name.

o To delete a file, we search the directory for the named file and then release

the space allocated to it.

 To reuse the directory entry, we can do one of several things:

o We can mark the entry as unused (by assigning it a special name)

o We can attach it to a list of free directory entries.

o We can copy the last entry in the directory into the freed location and

decrease the length of the directory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35

Directory Implementation (contd…)

• Hash Table

 A linear list stores the directory entries, with the help of hash data

structure.

 The hash table takes a value computed from the file name and returns a

pointer to the file name in the linear list.

 It decrease the directory search time.

 Insertion and deletion are also fairly straightforward, although some

provision must be made for collisions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.36

Disk Structure (Magnetic Disks)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.37

Disk Structure (contd…)

• Drives generally rotate 60 to 200 times per second.

• Transfer Rate - The rate at which data flow between the drive and the

computer.

• Positioning Time (Seek Time) – The time necessary to move the disk arm to the

desired cylinder.

• Rotational Latency - The time necessary for the desired sector to rotate to the

disk head.

• The disk head flies on an extremely thin cushion of air (measured in microns),

there is a danger that the head will make contact with the disk surface.

Although the disk platters are coated with a thin protective layer, the head can

sometimes damage the magnetic surface. This accident is called a head crash.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.38

Disk Structure (contd…)

• A disk drive is attached to a computer by a set of wires called an I/O bus.

• Several kinds of buses are available:

 Enhanced Integrated Drive Eelectronics (EIDE)

 Advanced Technology Attachment (ATA)

 Serial ATA (SATA)

 Universal Serial Bus (USB)

 Small Computer-Systems Interface (SCSI)

• The data transfers on a bus are carried out by special electronic processors

called controllers.

• The host controller is the controller at the computer end of the bus. A disk

controller is built into each drive.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.39

Disk Structure (contd…)

• To perform a disk I/O operation, the computer places a command into

the host controller.

• The host controller then sends the command via messages to the disk

controller.

• The disk controller operates the disk-drive hardware to carry out the

command.

• Disk controllers usually have a built-in cache.

• Data transfer at the disk drive happens between the cache and the disk

surface.

• Data transfer to the host occurs between the cache and the host

controller.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.40

Disk Structure (contd…)

• Disk drives are addressed as large one-dimensional arrays of logical blocks,

where the logical block is the smallest unit of transfer.

• The size of a logical block is usually 512 bytes.

• The one-dimensional array of logical blocks is mapped onto the sectors of the

disk sequentially.

• Sector 0 is the first sector of the first track on the outermost cylinder.

• The mapping proceeds in order through that track, then through the rest of

the tracks in that cylinder, and then through the rest of the cylinders from

outermost to innermost.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.41

Disk Structure (contd…)

• Constant Linear Velocity (CLV)

 On media that use CLV, the density of bits per track is uniform.

 The farther a track is from the center of the disk, the greater its length, so

the more sectors it can hold.

 As we move from outer zones to inner zones, the number of sectors per

track decreases.

 Tracks in the outermost zone typically hold 40 percent more sectors than do

tracks in the innermost zone.

 The drive increases its rotation speed as the head moves from the outer to

the inner tracks to keep the same rate of data moving under the head.

 This method is used in CD-ROM and DVD-ROM drives.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.42

Disk Structure (contd…)

• Constant Angular Velocity (CAV)

 The density of bits decreases from inner tracks to outer tracks to keep the

data rate constant.

 The disk rotation speed can stay constant.

 This method is used in hard disks.

 As disk technology improving, the number of cylinders per disk has been

increasing.

 Large disks have tens of thousands of cylinders.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.43

Allocation Methods

• The direct-access nature of disks allows us flexibility in the

implementation of files.

• Three major methods of allocating disk space are in wide use:

 Contiguous,

 Linked, and

 Indexed

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.44

Contiguous Allocation

• Each file occupy a set of contiguous blocks

on the disk.

• With this ordering, assuming that only

one job is accessing the disk, accessing

block b+1 after block b normally requires

no head movement.

• Contiguous allocation of a file is defined

by the disk address and length (in block

units) of the first block.

• The directory entry for each file indicates

the address of the starting block and the

length of the area allocated for this file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.45

Contiguous Allocation (contd…)

• The number of disk seeks required for accessing contiguously allocated

files is minimal.

 When head movement is needed (from the last sector of one cylinder to the first

sector of the next cylinder), the head needs only move from one track to the next.

• For sequential access, the file system remembers the disk address of the

last block referenced and, when necessary, reads the next block.

• For direct access to block i of a file that starts at block b, we can

immediately access block b + i.

• Thus, both sequential and direct access can be supported by contiguous

allocation.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.46

Contiguous Allocation (contd…)

• How to satisfy a request of size n from a list of free holes?

 First-fit and best-fit are the most common strategies used to select a free

hole from the set of available holes.

 Neither first-fit nor best-fit is clearly best in terms of storage utilization, but

first fit is generally faster.

 All these algorithms suffer from the problem of external fragmentation.

 External fragmentation becomes a problem when the largest contiguous

chunk is insufficient for a request; storage is fragmented into a number of

holes, none of which is large enough to store the data.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.47

Contiguous Allocation (contd…)

• How much space is needed for a file?

 When the file is created, the total amount of space it will need must be

found and allocated.

o In copying a file, this determination maybe fairly simple.

o In general, however, the size of an output file may be difficult to estimate.

o If we allocate too little space to a file, we may find that the file cannot be

extended.

o Especially with a best-fit allocation strategy, the space on both sides of the

file may be in use. Hence, we cannot make the file larger in place.

o Even if the total amount of space needed for a file is known in advance,

pre-allocation may be inefficient.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.48

Contiguous Allocation (contd…)

• To minimize these drawbacks, some operating systems use a modified

contiguous-allocation scheme.

 A contiguous chunk of space is allocated initially.

 If that amount proves not to be large enough, another chunk of contiguous

space, known as an extent, is added.

 The location of a file’s blocks is then recorded as a location and a block

count, plus a link to the first block of the next extent.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.49

Linked Allocation

• Linked allocation solves all problems

of contiguous allocation.

• With linked allocation, each file is a

linked list of disk blocks.

 The disk blocks may be scattered

anywhere on the disk.

 The directory contains a pointer to the

first and last blocks of the file.

 There is no external fragmentation

with linked allocation, and any free

block on the free-space list can be

used to satisfy a request.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.50

Linked Allocation (contd…)

• The major problem is that it can be used effectively only for sequential-

access files.

 To find the ith block of a file, we must start at the beginning of that file and

follow the pointers until we get to the ith block.

 Each access to a pointer requires a disk read, and some require a disk seek.

• The space required for the pointers is also a disadvantage.

• Another problem of linked allocation is reliability.

 The files are linked together by pointers scattered all over the disk, and

consider what would happen if a pointer is lost or damaged?

• The usual solution to this problem is to collect blocks into multiples,

called clusters, and to allocate clusters rather than blocks.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.51

Indexed Allocation

• Linked allocation solves the external-fragmentation and size-declaration

problems of contiguous allocation.

 However, linked allocation cannot support efficient direct access, since the

pointers to the blocks are scattered with the blocks themselves all over the

disk and must be retrieved in order.

 Indexed allocation solves this problem by bringing all the pointers

together into one location: the index block.

o Each file has its own index block, which is an array of disk-block addresses. The

ith entry in the index block points to the ith block of the file.

o The directory contains the address of the index block.

o To find and read the ith block, we use the pointer in the ith index-block entry.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.52

Indexed Allocation (contd…)

• When the file is created, all pointers in

the index block are set to nil.

• When the ith block is first written, a

block is obtained from the free-space

manager, and its address is put in the

ith index-block entry.

• Indexed allocation supports direct

access without suffering from external

fragmentation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.53

Indexed Allocation (contd…)

• Indexed allocation suffers from wasted space.

• The pointer overhead of the index block is generally greater than the

pointer overhead of linked allocation.

 Consider a common case in which we have a file of only one or two blocks.

 With linked allocation, we lose the space of only one pointer per block.

 With indexed allocation, an entire index block must be allocated, even if

only one or two pointers will be non-nil.

 This point raises the question of how large the index block should be.

o The index block should be small. If the index block is too small, however, it will

not be able to hold enough pointers for a large file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.54

Disk Scheduling Algorithms

• Background

 Seek Time is the time for the disk arm to move the heads to the cylinder containing the

desired sector.

 The Rotational Latency is the additional time for the disk to rotate the desired sector to the

disk head.

 The Disk Bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer.

• First-Come, First-Served (FCFS) Scheduling

• Shortest-Seek-Time-First (SSTF) Scheduling

• SCAN (Elevator Algorithm) Scheduling

• Circular SCAN (C-SCAN) Scheduling

• LOOK Scheduling

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.55

First-Come, First-Served (FCFS) Scheduling

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk head

is initially at cylinder 53.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.56

Shortest-Seek-Time-First (SSTF) Scheduling

• Service all the requests close to the current head position before

moving the head far away to service other requests.

 SSTF algorithm selects the request with the least seek time from the

current head position.

 Since seek time increases with the number of cylinders traversed by the

head, SSTF chooses the pending request closest to the current head

position.

 It may cause starvation of some requests.

o The requests may arrive at any time. Suppose that we have two requests in the queue,

for cylinders 14 and 186, and while the request from 14 is being serviced, a new

request near 14 arrives. This new request will be serviced next, making the request at

186 wait. While this request is being serviced, another request close to 14 could arrive.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.57

SSTF Scheduling (contd…)

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk head

is initially at cylinder 53.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.58

SCAN (Elevator) Scheduling

• The disk arm starts at one end of the disk and moves toward the other

end, servicing requests as it reaches each cylinder, until it gets to the

other end of the disk.

• At the other end, the direction of head movement is reversed, and

servicing continues.

• The head continuously scans back and forth across the disk.

• The SCAN algorithm is sometimes called the elevator algorithm, since the disk arm

behaves just like an elevator in a building, first servicing all the requests going up and

then reversing to service requests the other way.

• The direction of head movement in addition to the head’s current

position is important.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.59

SCAN (Elevator) Scheduling (contd…)

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk

head is initially at cylinder 53 and the disk arm is moving toward 0.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.60

C-SCAN Scheduling

• Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to

provide a more uniform wait time.

• Like SCAN, C-SCAN moves the head from one end of the disk to the

other, servicing requests along the way.

• When the head reaches the other end, however, it immediately returns

to the beginning of the disk without servicing any requests on the return

trip.

• The C-SCAN scheduling algorithm essentially treats the cylinders as a

circular list that wraps around from the final cylinder to the first one.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.61

C-SCAN Scheduling (contd…)

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk

head is initially at cylinder 53 and the disk arm is moving toward 199.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.62

LOOK and C-LOOK Scheduling

• Both SCAN and C-SCAN move the disk arm across the full width of the

disk.

 In practice, neither algorithm is often implemented this way.

 More commonly, the arm goes only as far as the final request in each

direction. Then, it reverses direction immediately, without going all the

way to the end of the disk.

 Versions of SCAN and C-SCAN that follow this pattern are called LOOK and

C-LOOK scheduling, because they look for a request before continuing to

move in a given direction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.63

C-LOOK Scheduling

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk

head is initially at cylinder 53 and the disk arm is moving toward 199.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.64

Question

Example: A disk queue requests for I/O to blocks on cylinders 82, 170, 43, 140,

24, 16, 190. Determine the total head movement, using the following algorithms,

(in cylinders) if the disk head is initially at cylinder 50 and the disk arm is moving

toward 199.

 FCFS

 SSTF

 SCAN

 C-SCAN

 LOOK

 C-LOOK

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.65

Device Management or I/O Management

• Computers operate many kinds of devices:

 Storage devices (disks, tapes)

 Transmission devices (network cards, modem)

 Human-interface devices (screen, keywords, mouse)

• To control the devices (which are connected to the Computer) is a big concern

because different I/O devices have different functions and different speed.

• Different methods are required to control different devices.

• Different methods (required to control the devices) form I/O Sub-system for

Kernel.

• To encapsulate the details and oddities of different devices, the Kernel of an OS

is structured to use device-driver modules.

• The device drivers present a uniform device-access interface to I/O Sub-system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.66

Port, Bus, Controller

• The device communicates with the machine via a connection point or port.

 Serial Port

 Parallel Port

 USB Port

 HDMI Port

• If some devices use a common set of wires, then it is called a Bus.

 A Bus is set of wires in which messages are conveyed by pattern of electrical voltage.

• A Controller is a collection of electronics that can operate a Port, Bus or a

Device.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.67

Character-Stream and Block Devices

• A character-stream device transfers bytes one-by-one

 It can use a few bytes for their operations and it does not requires buffering.

 The response time and processing speed are faster than the block devices.

 In character oriented the I/O can be performed directly between the system and the user and

as such, saves the kernel from the copying process and the buffering mechanisms overhead.

 Interface –> Character –> Keyword –> put(), get().

• A block device transfer a block of bytes as a unit.

 Block devices are storage devices that can provide data operations in fixed-size blocks for

both reading and writing.

 Hard drives, floppy disks, and optical drives, such as DVD-ROMs and CD-ROMs, are some

examples of such machines.

 To speed up the access during read and write operations it requires a buffering mechanism.

 Interface –> Block –> Disk –> read(), write(), seek().

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.68

Blocking and Non-blocking I/O

• Blocking I/O means that a given thread/process cannot do anything more until

the I/O is fully received.

 When an application/process issues blocking system call, the process execution Stops.

 Example: With blocking I/O, when a client makes a request to connect with the server, the

thread that handles that connection is blocked until there is some data to read, or the data is

fully written.

 Until the relevant operation is complete that thread/process can do nothing else but wait in

the wait queue.

• Some user-level processes perform non-blocking I/O.

 Example: Receiving data from Keyword or Mouse while displaying processed data on screen.

 Video player is example of non-blocking I/O which reads data/frames from HDD and play the

video on screen (after compression).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.69

Blocking and Non-blocking I/O

• Blocking I/O means that a given thread/process cannot do anything more until

the I/O is fully received.

 When an application/process issues blocking system call, the process execution Stops.

 Example: With blocking I/O, when a client makes a request to connect with the server, the

thread that handles that connection is blocked until there is some data to read, or the data is

fully written.

 Until the relevant operation is complete that thread/process can do nothing else but wait in

the wait queue.

• Some user-level processes perform non-blocking I/O.

 Example: Receiving data from Keyword or Mouse while displaying processed data on screen.

 Video player is example of non-blocking I/O which reads data/frames from HDD and play the

video on screen (after compression).

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.70

Buffering and Double Buffering

• The buffer is an area in the main memory used to store or hold the data

temporarily.

 In other words, buffer temporarily stores data transmitted from one place to another, either

between two devices or an application.

 The act of storing data temporarily in the buffer is called buffering.

 Buffering helps in matching speed between two devices in which the data is transmitted.

 It helps the devices with different sizes of data transfer to get adapted to each other.

 In computer networking, the large message is fragmented into small fragments and sent over the network. The

fragments are accumulated in the buffer at the receiving end and reassembled to form a complete large message.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.71

I/O Channels

• A channel is an independent hardware component that co-ordinates all I/O to a

set of controllers.

 Channels use separate, independent and low-cost processors for its functioning which are

called Channel Processors.

 Each channel supports one or more controllers or devices.

 Channel programs contain list of commands to the channel itself and for various connected

controllers or devices.

 When OS want to perform I/O, the OS initiates an I/O machine instruction for the channel

and then rest of the task to complete the I/O is performed by the channel.

 Multiplexer (Byte Multiplexer and Block Multiplexer)

 Selector

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.72

Disk Management

• Disk Formatting

• Boot Block

• Bad Blocks

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.73

Disk Formatting (Physical)

• A new magnetic disk is a blank slate (just a platter of a magnetic recording material).

• To store data, it must be divided into sectors that the disk controller can read and write. This

process is called low-level formatting, or physical formatting.

• Low-level formatting fills the disk with a special data structure for each sector.

• The data structure for a sector typically consists of a header, a data area (usually 512 bytes in

size), and a trailer.

• The header and trailer contain information used by the disk controller, such as a sector number

and an error-correcting code (ECC).

• When the controller writes a sector of data during normal I/O, the ECC is updated with a value

calculated from all the bytes in the data area.

• When the sector is read, the ECC is recalculated and is compared with the stored value. If the

stored and calculated numbers are different, this mismatch indicates that the data area of the

sector has become corrupted and that the disk sector may be bad.

• The controller automatically does the ECC processing whenever a sector is read or written.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.74

Disk Formatting (Logical)

• To use a disk to hold files, the OS still needs to record its own data structures on the disk.

• It does so in two steps:

 The first step is to partition the disk into one or more groups of cylinders.

 The OS can treat each partition as though it were a separate disk.

 For instance, one partition can hold a copy of the OS's executable code, while another holds user

files.

 After partitioning, the second step is logical formatting (or creation of a file system).

 In this step, the OS stores the initial file-system data structures onto the disk.

 These data structures may include maps of free and allocated space (a FAT or inodes) and an initial

empty directory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.75

Free-Space Management

• To keep track of free disk space, the system maintains a free-space list. The

free-space list records all free disk blocks.

 To create a file, we search the free-space list for the required amount of space and

allocate that space to the new file.

 This space is then removed from the free-space list.

 When a file is deleted, its disk space is added to the free-space list.

• Approaches for Free-Space Management

 Bit Vector

 Linked List

 Grouping

 Counting

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.76

Free-Space Management: Bit Vector

• Each block is represented by 1 bit.

 If the block is free, the bit is 1.

 If the block is allocated, the bit is 0.

• Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25,

26, and 27 are free and the rest of the blocks are allocated. The free-space bit

map or bit vector would be:

 001111001111110001100000011100000 ...

• Bit vectors are inefficient unless the entire vector is kept in main memory.

• Keeping it in main memory is possible for smaller disks but not necessarily for

larger ones.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.77

Free-Space Management: Linked List

• Link together all the free disk blocks, keeping a

pointer to the first free block in a special

location on the disk and caching it in memory.

 This first block contains a pointer to the next

free disk block, and so on.

 OS simply needs a free block so that it can

allocate that block to a file, so the first block in

the free list is used.

 It is not efficient to give the address of a large

number of free blocks since traversing in

linked-list is sequential.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.78

Free-Space Management: Grouping

• This approach stores the addresses of n free blocks in the first free

block.

 The first n−1 of these blocks are actually free.

 The last block contains the addresses of another n free blocks, and so on.

 The addresses of a large number of free blocks can now be found quickly

unlike the situation when the standard linked-list approach is used.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.79

Free-Space Management: Counting

• Generally, several contiguous blocks may be allocated or freed

simultaneously, particularly when space is allocated with the contiguous-

allocation algorithm or through clustering.

 Thus, rather than keeping a list of n free disk addresses, we can keep the

address of the first free block and the number (n) of free contiguous blocks

that follow the first block.

 Each entry in the free-space list then consists of a disk address and a count.

 These entries can be stored in a B-tree, rather than a linked list, for efficient

lookup, insertion, and deletion.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.80

RAID Structure

• RAID - Redundant Arrays of Independent Disks (RAIDs)

• A variety of disk-organization techniques, collectively called RAIDs are

commonly used to address the performance and reliability issues.

 The solution to the problem of reliability is to introduce redundancy

(duplicate every disk).

 The technique of duplicating every disk is called mirroring.

 With mirroring, a logical disk consists of two physical disks, and every

write is carried out on both disks. The result is called a mirrored

volume.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.81

RAID Structure (contd…)

• Parallel access to multiple disks improves performance.

 The number of reads per unit time has doubled.

 The transfer rate of each read is the same as in a single-disk system.

 With multiple disks, we can improve the transfer rate as well by striping

data across the disks.

o Data striping consists of splitting the bits of each byte across multiple disks; such

striping is called bit-level striping.

o In block-level striping, for instance, blocks of a file are striped across multiple disks;

with n disks, block i of a file goes to disk (i mod n) + 1.

o Block-level striping is the most common.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.82

RAID Levels

• Mirroring provides high reliability, but it is expensive.

• Striping provides high data-transfer rates, but it does not improve

reliability.

• There are various schemes to provide redundancy:

 RAID Level 0. RAID level 0 refers to disk arrays with striping at the level of blocks

but without any redundancy.

 RAID Level 1. RAID level 1 refers to disk mirroring.

 Other levels – Students should cover through home assignment.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

Operating Systems with Linux

(MCA-105)

Unit – 4

by

Dr. Sunil Pratap Singh
(Associate Professor, BVICAM, New Delhi)

2023

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

File

• A file is a collection of related data stored on mass storage (e.g., disk or

tape).

 The data is subdivided into records (e.g., student information).

 Each record contains a number of fields (e.g., roll number, name).

 One (or more) field is the key field (e.g., roll number).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

File Organizations

• A file organization refers to the way records are arranged on a storage

device.

• How best the files be arranged for easy of access?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

Sequential Files

• A sequential file is one in which records can only be accessed one after

another from beginning to end.

• This file organization is the simplest way to store and retrieve records

of a file.

• In this file, data records are stored in some specific sequence, e.g.,

order of arrival, value of key field, etc.

001 Manoj 22 002 Aman 21 003 Mukesh 21

Record 1 Record 2 Record 3

Key Key Key

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

Sequential Files

• The records of a sequential file cannot be accessed at random, i.e., to

access the nth record, one must traverse the preceding (n-1) records.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

Sequential File Organization

• In sequential file organization, the actual storage of records might or

might not be sequential:

 On a tape, it usually is.

 On a disk, it might be distributed across sectors and the operating system

would use a linked list of sectors to provide the illusion of sequentially.

• Editors and compilers usually access files in this fashion.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

Sequential File Organization

• Advantages

 Easy to handle

 Involves no overhead

 Can be stored on tapes as well as disks

• Disadvantages

 Records can only be accessed in sequence

 Time consuming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

Indexed File

• To access a record in a file randomly, we need to know the address of

the record.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

Indexed File: Logical View

• An indexed file is made of a data file

(also known as relative file), which is a

sequential file, and an index.

• The index itself is a very small file with

only two fields: the key of the

sequential file and the address of the

corresponding record on the disk.

• The index is sorted based on the key

values of the data files.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

Indexed File: Accessing a Record

• Accessing a record in the file requires following steps:

 The entire index file is loaded into main memory (the file is small and uses

little memory).

 The index entries are searched, using an efficient search algorithm such as

a binary search, to find the desired key.

 The address of the record is retrieved.

 Using the address, the data record is retrieved and passed to the user.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

Inverted File

• One of the advantages of indexed files is that we can have more than

one index, each with a different key.

• This type of indexed file is usually called an inverted file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

Direct File (Hashed File)

• A hashed file uses a mathematical function to map the key to the

address.

• The user gives the key, the function maps the key to the address and

passes it to the operating system, and the record is retrieved.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13

Process of Working in Direct File (Hashed File)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14

Text File versus Binary File

• A file stored on a storage device is a sequence of bits that can be

interpreted by an application program as a text file or a binary file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15

Text File

• A text file is a file of characters.

• It cannot contain integers, floating-point numbers, or any other data

structures in their internal memory format.

 To store these data types, they must be converted to their character

equivalent formats.

• Example: Character file sent to printer.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16

Binary File

• A binary file is a collection of data stored in the internal format of the

computer.

• Unlike text files, binary files contain data that is meaningful only if it is

properly interpreted by a program.

• If the data is textual, one byte is used to represent one character.

• If the data is numeric, two or more bytes are considered for a data

item.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17

File System

• The file system consists of two distinct parts:

 A collection of files (each storing related data)

 A directory structure (which organizes and provides information about all the

files in the system.

• Files are mapped by the operating system onto physical devices.

 These storage devices are usually nonvolatile, so the contents are persistent

through power failures and system reboots.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18

File Attributes

• A file’s attributes vary from one operating system to another but typically

consist of these:

 Name - The symbolic file name is the only information kept in human-readable form.

 Identifier - This unique tag, usually a number, identifies the file within the file

system; it is the non-human-readable name for the file.

 Type - This information is needed for systems that support different types of files.

 Location - This information is a pointer to a device and to the location of the file on

that device.

 Size - The current size of the file.

 Protection - Access-control information determines who can do reading, writing,

executing, and so on.

 Time, date, and user identification - This information may be kept for creation, last

modification, and last use.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19

File Attributes (contd…)

• The information about all files is kept in the directory structure, which also

resides on secondary storage.

• Typically, a directory entry consists of the file’s name and its unique identifier.

• The identifier, in turn, locates the other file attributes.

• It may take more than a kilobyte to record this information for each file.

• In a system with many files, the size of the directory itself may be megabytes.

• Directories, like files, must be nonvolatile, they must be stored on the device

and brought into memory, as needed.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20

File Operations

• Creating a File

 Two steps are necessary to create a file.

 First, space in the file system must be found for the file.

 Second, an entry for the new file must be made in the directory.

• Writing a File

 To write a file, we make a system call specifying both the name of the file and the

information to be written to the file.

 Given the name of the file, the system searches the directory to find the file’s

location.

 The system must keep a write pointer to the location in the file where the next write

is to take place.

 The write pointer must be updated whenever a write occurs.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21

File Operations (contd…)

• Reading a File

 To read from a file, we use a system call that specifies the name of the file and

where (in memory) the next block of the file should be put.

 The directory is searched for the associated entry, and the system needs to keep a

read pointer to the location in the file where the next read is to take place.

 Once the read has taken place, the read pointer is updated.

 Because a process is usually either reading from or writing to a file, the current

operation location can be kept as a per-process current file-position pointer.

 Both the read and write operations use this same pointer, saving space and reducing

system complexity.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22

File Operations (contd…)

• Repositioning within a File

 The directory is searched for the appropriate entry, and the current-file-

position pointer is repositioned to a given value.

 Repositioning within a file need not involve any actual I/O.

 This file operation is also known as a file seek.

• Deleting a File

 To delete a file, we search the directory for the named file.

 Having found the associated directory entry, we release all file space, so that

it can be reused by other files, and erase the directory entry.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23

File Operations (contd…)

• Truncating a File

 The user may want to erase the contents of a file but keep its attributes.

 Rather than forcing the user to delete the file and then recreate it, this

function allows all attributes to remain unchanged — except for file length —

but lets the file be reset to length zero and its file space released.

• Other Operations - Appending new Information to the end of an Existing

File, Renaming an Existing File

• The operating system keeps a small table, called the open-file table, containing

information about all open files. When a file operation is requested, the file is specified

via an index into this table, so no searching is required. When the file is no longer being

actively used, it is closed by the process, and the operating system removes its entry

from the open-file table.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24

Directory and Disk Structure

• Files are stored on random-access storage devices, including hard disks,

optical disks, and solid state (memory-based) disks.

• A storage device can be used in its entirety for a file system. It can also be

subdivided for finer-grained control.

 For example, a disk can be partitioned into quarters, and each quarter can

hold a file system.

 Storage devices can also be collected together into RAID sets that provide

protection from the failure of a single disk.

 Sometimes, disks are subdivided and also collected into RAID sets.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25

Directory and Disk Structure (contd…)

• Partitions are also known as slices or minidisks.

• A file system can be created on each of these parts of the disk.

• Any entity containing a file system is generally known as a volume.

• The volume may be a subset of a device, a whole device, or multiple

devices linked together into a RAID set.

• Each volume that contains a file system must also contain information

about the files in the system.

 This information is kept in entries in a device directory or volume table of contents.

 The device directory (more commonly known simply as that directory) records

information—such as name, location, size, and type—for all files on that volume.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26

Directory and Disk Structure (contd…)

File-System Organization

Computer systems may have zero or more file systems, and the file systems maybe of varying types.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27

Directory Structure

• The directory can be viewed as a symbol table that translates file names into

their directory entries.

• Various operations such as: search for a file, create a file, delete a file, list

directory, renaming a file, traversing the file system, etc. are performed on a

directory

• The most common schemes for defining the logical structure of directory

includes:

 Single-Level Directory

 Two-Level Directory

 Tree-Structured Directories

 Acyclic-Graph Directories

 General Graph Directory

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28

Single-Level Directory

• It is the simplest directory structure.

• All files are contained in the same directory, which is easy to support and

understand.

• This approach has limitations when the number of files increases or when the

system has more than one user.

 If two users call their data file “test”, then the unique-name rule is violated.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29

Two-Level Directory

• In the two-level directory structure, each user has his own user file directory.

 In the two-level directory structure, each user has his own User File Directory (UFD).

 The UFDs have similar structures, but each lists only the files of a single user.

 When a user job starts or a user logs in, the system’s Master File Directory (MFD) is

searched.

 The MFD is indexed by user name or account number, and each entry points to the

UFD for that user

• This structure effectively isolates one user from another.

• Isolation is an advantage when the users are completely independent but is a

disadvantage when the users want to cooperate on some task and to access

one another’s files.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30

Two-Level Directory (contd…)

• Programs provided as part of the system—loaders, assemblers, compilers, utility, routines,
libraries, and so on—are generally defined as files.

• As the directory system is defined presently, this file name would be searched for in the
current UFD.

• One solution would be to copy the system files into each UFD. However, copying all the
system files would waste an enormous amount of space.

• Solution – A special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first searches the
local UFD.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31

Tree-Structured Directory

• A generalization of Two-Level Directory structure is to extend the directory

structure to a tree of arbitrary height.

• This generalization allows users to create their own subdirectories and to

organize their files accordingly.

• A tree is the most common directory structure.

• The tree has a root directory, and every file in the system has a unique path

name.

• A directory (or subdirectory) contains a set of files or subdirectories.

• A directory is simply another file, but it is treated in a special way.

• One bit in each directory entry defines the entry as a file (0) or as a subdirectory

(1).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32

Tree-Structured Directory (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33

Acyclic-Graph Directory

 An acyclic graph allows

directories to share

subdirectories and files.

 The same file or subdirectory

may be in two different

directories.

 The acyclic graph is a natural

generalization of the tree-

structured directory scheme.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34

Directory Implementation

• Linear List

 A linear list of file names is maintained with pointers to the data blocks.

 This method is simple to program but time-consuming to execute.

o To create a new file, we must first search the directory to be sure that no

existing file has the same name.

o To delete a file, we search the directory for the named file and then release

the space allocated to it.

 To reuse the directory entry, we can do one of several things:

o We can mark the entry as unused (by assigning it a special name)

o We can attach it to a list of free directory entries.

o We can copy the last entry in the directory into the freed location and

decrease the length of the directory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35

Directory Implementation (contd…)

• Hash Table

 A linear list stores the directory entries, with the help of hash data

structure.

 The hash table takes a value computed from the file name and returns a

pointer to the file name in the linear list.

 It decrease the directory search time.

 Insertion and deletion are also fairly straightforward, although some

provision must be made for collisions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.36

Disk Structure (Magnetic Disks)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.37

Disk Structure (contd…)

• Drives generally rotate 60 to 200 times per second.

• Transfer Rate - The rate at which data flow between the drive and the

computer.

• Positioning Time (Seek Time) – The time necessary to move the disk arm to the

desired cylinder.

• Rotational Latency - The time necessary for the desired sector to rotate to the

disk head.

• The disk head flies on an extremely thin cushion of air (measured in microns),

there is a danger that the head will make contact with the disk surface.

Although the disk platters are coated with a thin protective layer, the head can

sometimes damage the magnetic surface. This accident is called a head crash.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.38

Disk Structure (contd…)

• A disk drive is attached to a computer by a set of wires called an I/O bus.

• Several kinds of buses are available:

 Enhanced Integrated Drive Eelectronics (EIDE)

 Advanced Technology Attachment (ATA)

 Serial ATA (SATA)

 Universal Serial Bus (USB)

 Small Computer-Systems Interface (SCSI)

• The data transfers on a bus are carried out by special electronic processors

called controllers.

• The host controller is the controller at the computer end of the bus. A disk

controller is built into each drive.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.39

Disk Structure (contd…)

• To perform a disk I/O operation, the computer places a command into

the host controller.

• The host controller then sends the command via messages to the disk

controller.

• The disk controller operates the disk-drive hardware to carry out the

command.

• Disk controllers usually have a built-in cache.

• Data transfer at the disk drive happens between the cache and the disk

surface.

• Data transfer to the host occurs between the cache and the host

controller.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.40

Disk Structure (contd…)

• Disk drives are addressed as large one-dimensional arrays of logical blocks,

where the logical block is the smallest unit of transfer.

• The size of a logical block is usually 512 bytes.

• The one-dimensional array of logical blocks is mapped onto the sectors of the

disk sequentially.

• Sector 0 is the first sector of the first track on the outermost cylinder.

• The mapping proceeds in order through that track, then through the rest of

the tracks in that cylinder, and then through the rest of the cylinders from

outermost to innermost.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.41

Disk Structure (contd…)

• Constant Linear Velocity (CLV)

 On media that use CLV, the density of bits per track is uniform.

 The farther a track is from the center of the disk, the greater its length, so

the more sectors it can hold.

 As we move from outer zones to inner zones, the number of sectors per

track decreases.

 Tracks in the outermost zone typically hold 40 percent more sectors than do

tracks in the innermost zone.

 The drive increases its rotation speed as the head moves from the outer to

the inner tracks to keep the same rate of data moving under the head.

 This method is used in CD-ROM and DVD-ROM drives.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.42

Disk Structure (contd…)

• Constant Angular Velocity (CAV)

 The density of bits decreases from inner tracks to outer tracks to keep the

data rate constant.

 The disk rotation speed can stay constant.

 This method is used in hard disks.

 As disk technology improving, the number of cylinders per disk has been

increasing.

 Large disks have tens of thousands of cylinders.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.43

Allocation Methods

• The direct-access nature of disks allows us flexibility in the

implementation of files.

• Three major methods of allocating disk space are in wide use:

 Contiguous,

 Linked, and

 Indexed

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.44

Contiguous Allocation

• Each file occupy a set of contiguous blocks

on the disk.

• With this ordering, assuming that only

one job is accessing the disk, accessing

block b+1 after block b normally requires

no head movement.

• Contiguous allocation of a file is defined

by the disk address and length (in block

units) of the first block.

• The directory entry for each file indicates

the address of the starting block and the

length of the area allocated for this file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.45

Contiguous Allocation (contd…)

• The number of disk seeks required for accessing contiguously allocated

files is minimal.

 When head movement is needed (from the last sector of one cylinder to the first

sector of the next cylinder), the head needs only move from one track to the next.

• For sequential access, the file system remembers the disk address of the

last block referenced and, when necessary, reads the next block.

• For direct access to block i of a file that starts at block b, we can

immediately access block b + i.

• Thus, both sequential and direct access can be supported by contiguous

allocation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.46

Contiguous Allocation (contd…)

• How to satisfy a request of size n from a list of free holes?

 First-fit and best-fit are the most common strategies used to select a free

hole from the set of available holes.

 Neither first-fit nor best-fit is clearly best in terms of storage utilization, but

first fit is generally faster.

 All these algorithms suffer from the problem of external fragmentation.

 External fragmentation becomes a problem when the largest contiguous

chunk is insufficient for a request; storage is fragmented into a number of

holes, none of which is large enough to store the data.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.47

Contiguous Allocation (contd…)

• How much space is needed for a file?

 When the file is created, the total amount of space it will need must be

found and allocated.

o In copying a file, this determination maybe fairly simple.

o In general, however, the size of an output file may be difficult to estimate.

o If we allocate too little space to a file, we may find that the file cannot be

extended.

o Especially with a best-fit allocation strategy, the space on both sides of the

file may be in use. Hence, we cannot make the file larger in place.

o Even if the total amount of space needed for a file is known in advance,

pre-allocation may be inefficient.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.48

Contiguous Allocation (contd…)

• To minimize these drawbacks, some operating systems use a modified

contiguous-allocation scheme.

 A contiguous chunk of space is allocated initially.

 If that amount proves not to be large enough, another chunk of contiguous

space, known as an extent, is added.

 The location of a file’s blocks is then recorded as a location and a block

count, plus a link to the first block of the next extent.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.49

Linked Allocation

• Linked allocation solves all problems

of contiguous allocation.

• With linked allocation, each file is a

linked list of disk blocks.

 The disk blocks may be scattered

anywhere on the disk.

 The directory contains a pointer to the

first and last blocks of the file.

 There is no external fragmentation

with linked allocation, and any free

block on the free-space list can be

used to satisfy a request.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.50

Linked Allocation (contd…)

• The major problem is that it can be used effectively only for sequential-

access files.

 To find the ith block of a file, we must start at the beginning of that file and

follow the pointers until we get to the ith block.

 Each access to a pointer requires a disk read, and some require a disk seek.

• The space required for the pointers is also a disadvantage.

• Another problem of linked allocation is reliability.

 The files are linked together by pointers scattered all over the disk, and

consider what would happen if a pointer is lost or damaged?

• The usual solution to this problem is to collect blocks into multiples,

called clusters, and to allocate clusters rather than blocks.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.51

Indexed Allocation

• Linked allocation solves the external-fragmentation and size-declaration

problems of contiguous allocation.

 However, linked allocation cannot support efficient direct access, since the

pointers to the blocks are scattered with the blocks themselves all over the

disk and must be retrieved in order.

 Indexed allocation solves this problem by bringing all the pointers

together into one location: the index block.

o Each file has its own index block, which is an array of disk-block addresses. The

ith entry in the index block points to the ith block of the file.

o The directory contains the address of the index block.

o To find and read the ith block, we use the pointer in the ith index-block entry.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.52

Indexed Allocation (contd…)

• When the file is created, all pointers in

the index block are set to nil.

• When the ith block is first written, a

block is obtained from the free-space

manager, and its address is put in the

ith index-block entry.

• Indexed allocation supports direct

access without suffering from external

fragmentation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.53

Indexed Allocation (contd…)

• Indexed allocation suffers from wasted space.

• The pointer overhead of the index block is generally greater than the

pointer overhead of linked allocation.

 Consider a common case in which we have a file of only one or two blocks.

 With linked allocation, we lose the space of only one pointer per block.

 With indexed allocation, an entire index block must be allocated, even if

only one or two pointers will be non-nil.

 This point raises the question of how large the index block should be.

o The index block should be small. If the index block is too small, however, it will

not be able to hold enough pointers for a large file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.54

Disk Scheduling Algorithms

• Background

 Seek Time is the time for the disk arm to move the heads to the cylinder containing the

desired sector.

 The Rotational Latency is the additional time for the disk to rotate the desired sector to the

disk head.

 The Disk Bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer.

• First-Come, First-Served (FCFS) Scheduling

• Shortest-Seek-Time-First (SSTF) Scheduling

• SCAN (Elevator Algorithm) Scheduling

• Circular SCAN (C-SCAN) Scheduling

• LOOK Scheduling

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.55

First-Come, First-Served (FCFS) Scheduling

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk head

is initially at cylinder 53.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.56

Shortest-Seek-Time-First (SSTF) Scheduling

• Service all the requests close to the current head position before

moving the head far away to service other requests.

 SSTF algorithm selects the request with the least seek time from the

current head position.

 Since seek time increases with the number of cylinders traversed by the

head, SSTF chooses the pending request closest to the current head

position.

 It may cause starvation of some requests.

o The requests may arrive at any time. Suppose that we have two requests in the queue,

for cylinders 14 and 186, and while the request from 14 is being serviced, a new

request near 14 arrives. This new request will be serviced next, making the request at

186 wait. While this request is being serviced, another request close to 14 could arrive.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.57

SSTF Scheduling (contd…)

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk head

is initially at cylinder 53.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.58

SCAN (Elevator) Scheduling

• The disk arm starts at one end of the disk and moves toward the other

end, servicing requests as it reaches each cylinder, until it gets to the

other end of the disk.

• At the other end, the direction of head movement is reversed, and

servicing continues.

• The head continuously scans back and forth across the disk.

• The SCAN algorithm is sometimes called the elevator algorithm, since the disk arm

behaves just like an elevator in a building, first servicing all the requests going up and

then reversing to service requests the other way.

• The direction of head movement in addition to the head’s current

position is important.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.59

SCAN (Elevator) Scheduling (contd…)

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk

head is initially at cylinder 53 and the disk arm is moving toward 0.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.60

C-SCAN Scheduling

• Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to

provide a more uniform wait time.

• Like SCAN, C-SCAN moves the head from one end of the disk to the

other, servicing requests along the way.

• When the head reaches the other end, however, it immediately returns

to the beginning of the disk without servicing any requests on the return

trip.

• The C-SCAN scheduling algorithm essentially treats the cylinders as a

circular list that wraps around from the final cylinder to the first one.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.61

C-SCAN Scheduling (contd…)

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk

head is initially at cylinder 53 and the disk arm is moving toward 199.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.62

LOOK and C-LOOK Scheduling

• Both SCAN and C-SCAN move the disk arm across the full width of the

disk.

 In practice, neither algorithm is often implemented this way.

 More commonly, the arm goes only as far as the final request in each

direction. Then, it reverses direction immediately, without going all the

way to the end of the disk.

 Versions of SCAN and C-SCAN that follow this pattern are called LOOK and

C-LOOK scheduling, because they look for a request before continuing to

move in a given direction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.63

C-LOOK Scheduling

Example: A disk queue requests for I/O to blocks on cylinders 98, 183, 37, 122,

14, 124, 65, 67. Determine the total head movement (in cylinders) if the disk

head is initially at cylinder 53 and the disk arm is moving toward 199.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.64

Question

Example: A disk queue requests for I/O to blocks on cylinders 82, 170, 43, 140,

24, 16, 190. Determine the total head movement, using the following algorithms,

(in cylinders) if the disk head is initially at cylinder 50 and the disk arm is moving

toward 199.

 FCFS

 SSTF

 SCAN

 C-SCAN

 LOOK

 C-LOOK

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.65

Device Management or I/O Management

• Computers operate many kinds of devices:

 Storage devices (disks, tapes)

 Transmission devices (network cards, modem)

 Human-interface devices (screen, keywords, mouse)

• To control the devices (which are connected to the Computer) is a big concern

because different I/O devices have different functions and different speed.

• Different methods are required to control different devices.

• Different methods (required to control the devices) form I/O Sub-system for

Kernel.

• To encapsulate the details and oddities of different devices, the Kernel of an OS

is structured to use device-driver modules.

• The device drivers present a uniform device-access interface to I/O Sub-system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.66

Port, Bus, Controller

• The device communicates with the machine via a connection point or port.

 Serial Port

 Parallel Port

 USB Port

 HDMI Port

• If some devices use a common set of wires, then it is called a Bus.

 A Bus is set of wires in which messages are conveyed by pattern of electrical voltage.

• A Controller is a collection of electronics that can operate a Port, Bus or a

Device.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.67

Character-Stream and Block Devices

• A character-stream device transfers bytes one-by-one

 It can use a few bytes for their operations and it does not requires buffering.

 The response time and processing speed are faster than the block devices.

 In character oriented the I/O can be performed directly between the system and the user and

as such, saves the kernel from the copying process and the buffering mechanisms overhead.

 Interface –> Character –> Keyword –> put(), get().

• A block device transfer a block of bytes as a unit.

 Block devices are storage devices that can provide data operations in fixed-size blocks for

both reading and writing.

 Hard drives, floppy disks, and optical drives, such as DVD-ROMs and CD-ROMs, are some

examples of such machines.

 To speed up the access during read and write operations it requires a buffering mechanism.

 Interface –> Block –> Disk –> read(), write(), seek().

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.68

Blocking and Non-blocking I/O

• Blocking I/O means that a given thread/process cannot do anything more until

the I/O is fully received.

 When an application/process issues blocking system call, the process execution Stops.

 Example: With blocking I/O, when a client makes a request to connect with the server, the

thread that handles that connection is blocked until there is some data to read, or the data is

fully written.

 Until the relevant operation is complete that thread/process can do nothing else but wait in

the wait queue.

• Some user-level processes perform non-blocking I/O.

 Example: Receiving data from Keyword or Mouse while displaying processed data on screen.

 Video player is example of non-blocking I/O which reads data/frames from HDD and play the

video on screen (after compression).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.69

Blocking and Non-blocking I/O

• Blocking I/O means that a given thread/process cannot do anything more until

the I/O is fully received.

 When an application/process issues blocking system call, the process execution Stops.

 Example: With blocking I/O, when a client makes a request to connect with the server, the

thread that handles that connection is blocked until there is some data to read, or the data is

fully written.

 Until the relevant operation is complete that thread/process can do nothing else but wait in

the wait queue.

• Some user-level processes perform non-blocking I/O.

 Example: Receiving data from Keyword or Mouse while displaying processed data on screen.

 Video player is example of non-blocking I/O which reads data/frames from HDD and play the

video on screen (after compression).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.70

Buffering and Double Buffering

• The buffer is an area in the main memory used to store or hold the data

temporarily.

 In other words, buffer temporarily stores data transmitted from one place to another, either

between two devices or an application.

 The act of storing data temporarily in the buffer is called buffering.

 Buffering helps in matching speed between two devices in which the data is transmitted.

 It helps the devices with different sizes of data transfer to get adapted to each other.

 In computer networking, the large message is fragmented into small fragments and sent over the network. The

fragments are accumulated in the buffer at the receiving end and reassembled to form a complete large message.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.71

I/O Channels

• A channel is an independent hardware component that co-ordinates all I/O to a

set of controllers.

 Channels use separate, independent and low-cost processors for its functioning which are

called Channel Processors.

 Each channel supports one or more controllers or devices.

 Channel programs contain list of commands to the channel itself and for various connected

controllers or devices.

 When OS want to perform I/O, the OS initiates an I/O machine instruction for the channel

and then rest of the task to complete the I/O is performed by the channel.

 Multiplexer (Byte Multiplexer and Block Multiplexer)

 Selector

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.72

Disk Management

• Disk Formatting

• Boot Block

• Bad Blocks

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.73

Disk Formatting (Physical)

• A new magnetic disk is a blank slate (just a platter of a magnetic recording material).

• To store data, it must be divided into sectors that the disk controller can read and write. This

process is called low-level formatting, or physical formatting.

• Low-level formatting fills the disk with a special data structure for each sector.

• The data structure for a sector typically consists of a header, a data area (usually 512 bytes in

size), and a trailer.

• The header and trailer contain information used by the disk controller, such as a sector number

and an error-correcting code (ECC).

• When the controller writes a sector of data during normal I/O, the ECC is updated with a value

calculated from all the bytes in the data area.

• When the sector is read, the ECC is recalculated and is compared with the stored value. If the

stored and calculated numbers are different, this mismatch indicates that the data area of the

sector has become corrupted and that the disk sector may be bad.

• The controller automatically does the ECC processing whenever a sector is read or written.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.74

Disk Formatting (Logical)

• To use a disk to hold files, the OS still needs to record its own data structures on the disk.

• It does so in two steps:

 The first step is to partition the disk into one or more groups of cylinders.

 The OS can treat each partition as though it were a separate disk.

 For instance, one partition can hold a copy of the OS's executable code, while another holds user

files.

 After partitioning, the second step is logical formatting (or creation of a file system).

 In this step, the OS stores the initial file-system data structures onto the disk.

 These data structures may include maps of free and allocated space (a FAT or inodes) and an initial

empty directory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.75

Free-Space Management

• To keep track of free disk space, the system maintains a free-space list. The

free-space list records all free disk blocks.

 To create a file, we search the free-space list for the required amount of space and

allocate that space to the new file.

 This space is then removed from the free-space list.

 When a file is deleted, its disk space is added to the free-space list.

• Approaches for Free-Space Management

 Bit Vector

 Linked List

 Grouping

 Counting

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.76

Free-Space Management: Bit Vector

• Each block is represented by 1 bit.

 If the block is free, the bit is 1.

 If the block is allocated, the bit is 0.

• Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25,

26, and 27 are free and the rest of the blocks are allocated. The free-space bit

map or bit vector would be:

 001111001111110001100000011100000 ...

• Bit vectors are inefficient unless the entire vector is kept in main memory.

• Keeping it in main memory is possible for smaller disks but not necessarily for

larger ones.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.77

Free-Space Management: Linked List

• Link together all the free disk blocks, keeping a

pointer to the first free block in a special

location on the disk and caching it in memory.

 This first block contains a pointer to the next

free disk block, and so on.

 OS simply needs a free block so that it can

allocate that block to a file, so the first block in

the free list is used.

 It is not efficient to give the address of a large

number of free blocks since traversing in

linked-list is sequential.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.78

Free-Space Management: Grouping

• This approach stores the addresses of n free blocks in the first free

block.

 The first n−1 of these blocks are actually free.

 The last block contains the addresses of another n free blocks, and so on.

 The addresses of a large number of free blocks can now be found quickly

unlike the situation when the standard linked-list approach is used.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.79

Free-Space Management: Counting

• Generally, several contiguous blocks may be allocated or freed

simultaneously, particularly when space is allocated with the contiguous-

allocation algorithm or through clustering.

 Thus, rather than keeping a list of n free disk addresses, we can keep the

address of the first free block and the number (n) of free contiguous blocks

that follow the first block.

 Each entry in the free-space list then consists of a disk address and a count.

 These entries can be stored in a B-tree, rather than a linked list, for efficient

lookup, insertion, and deletion.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.80

RAID Structure

• RAID - Redundant Arrays of Independent Disks (RAIDs)

• A variety of disk-organization techniques, collectively called RAIDs are

commonly used to address the performance and reliability issues.

 The solution to the problem of reliability is to introduce redundancy

(duplicate every disk).

 The technique of duplicating every disk is called mirroring.

 With mirroring, a logical disk consists of two physical disks, and every

write is carried out on both disks. The result is called a mirrored

volume.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.81

RAID Structure (contd…)

• Parallel access to multiple disks improves performance.

 The number of reads per unit time has doubled.

 The transfer rate of each read is the same as in a single-disk system.

 With multiple disks, we can improve the transfer rate as well by striping

data across the disks.

o Data striping consists of splitting the bits of each byte across multiple disks; such

striping is called bit-level striping.

o In block-level striping, for instance, blocks of a file are striped across multiple disks;

with n disks, block i of a file goes to disk (i mod n) + 1.

o Block-level striping is the most common.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.82

RAID Levels

• Mirroring provides high reliability, but it is expensive.

• Striping provides high data-transfer rates, but it does not improve

reliability.

• There are various schemes to provide redundancy:

 RAID Level 0. RAID level 0 refers to disk arrays with striping at the level of blocks

but without any redundancy.

 RAID Level 1. RAID level 1 refers to disk mirroring.

 Other levels – Students should cover through home assignment.

	1
	Unit - 4 (Full)

