
Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.1

Operating Systems with Linux

(MCA-105)

Unit – 3

by

Dr. Sunil Pratap Singh
(Associate Professor, BVICAM, New Delhi)

2023

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2

Deadlock

 In a multiprogramming environment,

several processes may compete for a

finite number of resources.

 A process requests resources; if the

resources are not available at that

time, the process enters a waiting

state.

 Sometimes, a waiting process is never

again able to change state, because

the resources it has requested are

held by other waiting processes.

 This situation is called a deadlock.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3

Deadlock (contd…)

 Deadlock can be defined as the permanent blocking of a set of

processes that either compete for system resources or communicate

with each other.

 A set of processes is deadlocked when each process in the set is blocked

awaiting an event (typically the freeing up of some requested resource)

that can only be triggered by another blocked process in the set.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4

System Model

 A system consists of a finite number of resources to be distributed

among a number of competing processes.

 The resources are partitioned into several types, each consisting of some number

of identical instances.

 Memory space, CPU cycles, files, and I/O devices (such as printers and DVD drives)

are examples of resource types.

 If a system has two CPUs, then the resource type CPU has two instances.

 Similarly, the resource type printer may have five instances.

 If a process requests an instance of a resource type, the allocation of any instance

of the type will satisfy the request.

 If it will not, then the instances are not identical, and the resource type classes

have not been defined properly.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5

System Model (contd…)

• A process may utilize a resource in only the following sequence:

 Request - The process requests the resource. If the request cannot be

granted immediately (for example, if the resource is being used by another

process), then the requesting process must wait until it can acquire the

resource.

 Use - The process can operate on the resource (for example, if the

resource is a printer, the process can print on the printer).

 Release - The process releases the resource.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6

System Model (contd…)

• The request and release of resources are system calls.

 Examples: request() and release() device, open() and close() file, and

allocate() and free() memory works as system calls.

• Request and release of resources that are not managed by the operating

system can be accomplished through the wait() and signal() operations on

semaphores.

• The resources may be either physical resources (printers, tape drives, memory

space, and CPU cycles) or logical resources (files, semaphores, and monitors).

• Deadlocks may involve same resource type (Printer) or different resource

types (Printer and DVD drive).

• Multithreaded programs are good candidates for deadlock because multiple

threads can compete for shared resources.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7

Deadlock Characterization

• Necessary and Sufficient Conditions - A deadlock situation arises if the

following four conditions hold simultaneously in a system:

 Mutual Exclusion - Only one process at a time can use the resource.

 Hold and Wait - A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

 No-Preemption - Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has

completed its task.

 Circular Wait - A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1

is waiting for a resource held by Pn, and Pn is waiting for a resource held by P0.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8

Methods for Handling Deadlocks

• Deadlock Ignorance

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection and Recovery

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9

Deadlock Ignorance

• We can ignore the problem altogether and pretend that deadlocks never

occur in the system.

• This approach is used by most operating systems, including UNIX and

Windows; it is then up to the application developer to write programs

that handle deadlocks.

 There is always a tradeoff between Correctness and Performance. The operating systems

like Windows and Linux mainly focus upon performance. However, the performance of the

system decreases if it uses deadlock handling mechanism all the time if deadlock happens 1

out of 100 times then it is completely unnecessary to use the deadlock handling mechanism

all the time.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10

Deadlock Prevention

• If we can be able to violate one of the four necessary conditions and don’t let

them occur together then we can prevent the deadlock.

 Mutual Exclusion

o If we can be able to violate resources behaving in the mutually exclusive manner then the

deadlock can be prevented.

o For a device like printer, Spooling can work - a memory is associated with the printer which

stores jobs from each of the process into it. The printer collects all the jobs and print each

one of them according to FCFS. By using this mechanism, the process doesn’t have to wait

for the printer and it can continue whatever it was doing.

o Although, Spooling can be an effective approach to violate mutual exclusion but it suffers

from two kinds of problems: (1) This cannot be applied to every resource, and (2) After some

point of time, there may arise a race condition between the processes to get space in that

spool.

o We cannot force a resource to be used by more than one process at the same time.

Therefore, we cannot violate mutual exclusion for a process practically.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11

Deadlock Prevention (contd…)

• Hold and Wait

o The hold-and-wait condition can be prevented by requiring that a process

request all of its required resources at one time and blocking the process

until all requests can be granted simultaneously.

o This approach is inefficient in two ways:

1) First, a process may be held up for a long time waiting for all of its resource

requests to be filled, when in fact it could have proceeded with only some of

the resources.

2) Resources allocated to a process may remain unused for a considerable

period, during which time they are denied to other processes.

o Another problem is that a process may not know in advance all of the

resources that it will require.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12

Deadlock Prevention (contd…)

• No-Preemption

o If a process holding certain resources is denied a further request, that

process must release its original resources and, if necessary, request

them again together with the additional resource.

o If a process requests a resource that is currently held by another process,

the operating system may preempt the second process and require it to

release its resources.

o This approach is practical only when applied to resources whose state can

be easily saved and restored later, as is the case with a processor.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13

Deadlock Prevention (contd…)

• Circular Wait

o The circular-wait condition can be prevented by defining a linear ordering

of resource types.

o If a process has been allocated resources of type R, then it may

subsequently request only those resources of types following R in the

ordering.

o This approach may be inefficient, slowing down processes and denying

resource access unnecessarily.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14

Deadlock Avoidance

• Deadlock avoidance allows the three necessary conditions but makes

judicious choices to assure that the deadlock point is never reached.

• With deadlock avoidance, a decision is made dynamically whether the

current resource allocation request will, if granted, potentially lead to a

deadlock.

• Deadlock avoidance thus requires knowledge of future process resource

requests.

• Approaches to deadlock avoidance:

 Process Initiation Denial

 Resource Allocation Denial

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15

Process Initiation Denial

Consider a system with n processes and m different types of resources.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16

• The following relationship holds:

• With these quantities defined, we can define a deadlock avoidance policy

that refuses to start a new process if its resource requirements might lead

to deadlock.

• Start a new process Pn+1 only if

Process Initiation Denial (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17

Resource Allocation Denial (Banker’s Algorithm)

• Why Banker’s algorithm is named so?

 Banker’s algorithm is named so because it is used in banking system to check

whether loan can be sanctioned to a person or not.

 The customers who wish to borrow money corresponds to processes and the

money to be borrowed corresponds to resources.

 Suppose there are n number of account holders in a bank and the total sum of their

money is S. If a person applies for a loan then the bank first subtracts the loan

amount from the total money that bank has and if the remaining amount is greater

than S then only the loan is sanctioned. It is done because if all the account holders

comes to withdraw their money then the bank can easily do it.

 In other words, the bank would never allocate its money in such a way that it can

no longer satisfy the needs of all its customers. The bank would try to be in safe

state always.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18

Banker’s Algorithm

• Consider a system with a fixed number of processes and a fixed number

of resources.

• At any time a process may have zero or more resources allocated to it.

• The state of the system reflects the current allocation of resources to

processes.

 The state consists of the two vectors, Resource and Available, and the two

matrices, Claim and Allocation.

 A state of the system is called safe if the system can allocate all the

resources requested by all the processes without entering into deadlock.

 If the system cannot fulfill the request of all processes then the state of the

system is called unsafe.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19

Banker’s Algorithm (contd…)

• Banker’s algorithm is a deadlock avoidance and resource allocation

algorithm.

• When a process makes a request for a set of resources, assume that the

request is granted, update the system state accordingly, and then

determine if the result is a safe state.

• If so, grant the request and, if not, block the process until it is safe to

grant the request.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20

Banker’s Algorithm – Example 1

Initial State

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21

Banker’s Algorithm – Example 1 (contd..)

P2 runs to completion

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22

Banker’s Algorithm – Example 1 (contd..)

P1 runs to completion

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23

Banker’s Algorithm – Example 1 (contd..)

P3 runs to completion, similarly P4 will also run to completion.

It is clear that the given state is safe state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24

Banker’s Algorithm – Example 2

Given the initial state, assume that P1 has an additional unit of R1 and R3.
Determine the state of the system.

Initial State

If we assume that the request is granted, the state will be as shown in next slide.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25

Banker’s Algorithm - Example 2 (contd..)

P1 requests one additional unit of R1 and R3

Is this a safe state? The answer is no, because each process will need at least one

additional unit of R1, and there are none available.

Thus, on the basis of deadlock avoidance, the request by P1 should be denied and P1

should be blocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26

Deadlock Detection and Recovery

• In this approach, the operating system does not apply any mechanism to

avoid or prevent the deadlocks.

• Therefore, the system considers that the deadlock will definitely occur.

• In order to get rid of deadlocks, the operating system periodically checks

the system for any deadlock.

• In case, it finds any of the deadlock, then, the operating system will

recover the system using some recovery techniques.

• The main task of the operating system is detecting the deadlocks. The

operating system can detect the deadlocks with the help of Resource

Allocation Graph.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27

Deadlock Detection and Recovery (contd..)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28

Resource-Allocation Graph

• Deadlocks can be described more precisely in terms of a directed graph,

called a system Resource-Allocation Graph:

 This graph consists of a set of vertices V and a set of edges E.

 The set of vertices V is partitioned into two different types of nodes:

o P = {P1, P2, ..., Pn}, the set consisting of all the active processes in the system.

o R = {R1, R2, ..., Rm}, the set consisting of all resource types in the system.

 A directed edge from process Pi to resource type Rj is denoted by Pi → Rj (request

edge); it signifies that process Pi has requested an instance of resource type Rj and

is currently waiting for that resource.

 A directed edge from resource type Rj to process Pi is denoted by Rj → Pi

(assignment edge); it signifies that an instance of resource type Rj has been

allocated to process Pi .

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29

Resource-Allocation Graph (contd…)

• Each process Pi is represented as a circle and each resource type Rj is

represented as a rectangle.

 Resource type Rj may have more than one instance, each instance is represented

as a dot within the rectangle.

 A request edge points to only the rectangle Rj, whereas an assignment edge must

also designate one of the dots in the rectangle.

• When process Pi requests an instance of resource type Rj, a request edge is

inserted in the resource-allocation graph.

• When this request can be fulfilled, the request edge is instantaneously

transformed to an assignment edge.

• When the process no longer needs access to the resource, it releases the

resource; as a result, the assignment edge is deleted.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30

Resource-Allocation Graph (contd…)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31

Resource-Allocation Graph: Example

• P = {P1, P2, P3}

• R = {R1, R2, R3, R4}

• E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32

Deadlock Detection using RAG

• If the graph contains no cycles, then no process in the system is deadlocked.

• If the graph does contain a cycle, then a deadlock may exist.

• If each resource type has exactly one instance, then a cycle implies that a deadlock has

occurred.

• If the cycle involves only a set of resource types, each of which has only a single

instance, then a deadlock has occurred.

• Each process involved in the cycle is deadlocked.

• In this case, a cycle in the graph is both a necessary and a sufficient condition for the

existence of deadlock.

• If each resource type has several instances, then a cycle does not necessarily imply that

a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a

sufficient condition for the existence of deadlock.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33

Deadlock Detection using RAG: Example

• Cycle 1: P1 → R1 → P2 → R3 → P3 → R2 → P1

• Cycle 2: P2 → R3 → P3 → R2 → P2

• Processes P1, P2, and P3 are deadlocked.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34

Deadlock Detection using RAG: Example

• Cycle 1: P1 → R1 → P3 → R2 → P1

• There is no deadlock.

• The process P4 may release its

instance of resource type R2. That

resource can then be allocated to P3,

breaking the cycle.

In summary, if a resource-allocation graph

does not have a cycle, then the system is not

in a deadlocked state. If there is a cycle,

then the system may or may not be

in a deadlocked state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36

Deadlock Detection using RAG: Example

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39

Deadlock Detection using RAG: Example

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40

Deadlock Detection for Several Instance of Resource

• Let, an Allocation Matrix, a Request Matrix Q, and an Available Vector

• The algorithm proceeds by marking processes that are not deadlocked.

Initially, all processes are unmarked. Then the following steps are performed:

• A deadlock exists if and only if there are unmarked processes at the end of the

algorithm. Each unmarked process is deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41

Deadlock Detection - Example

• Mark P4, because P4 has no allocated resources.

• Set W = (0 0 0 0 1).

• The request of process P3 is less than or equal to W, so mark P3 and set W = W + (0 0 0 1 0) = (0

0 0 1 1).

• No other unmarked process has a row in Q that is less than or equal to W. Therefore, terminate

the algorithm.

• The algorithm concludes with P1 and P2 unmarked, indicating that these processes are

deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42

Deadlock Recovery

• To recover deadlock, the operating system examines either resources

or processes.

• For Process:

 Kill a Process: In this approach, kill the process due to which deadlock

occurred. But the selection of the process to kill is a tough task. In this, the

operating system mainly kills that process, which does not work more till

now.

 Kill all Process: Kill all the processes is not a suitable approach. We can use

this approach when the problem becomes critical. By killing all the

processes, the system efficiency will be decreased, and we have to execute

all the processes further from the start.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43

Deadlock Recovery (contd…)

• For Resources:

 Preempt the Resource: In this, we take the resource from one process to

the process that needs it to finish its execution, and after the execution is

completed, the process soon releases the resource. In this, the resource

selection is difficult, and the snatching of the resource is also difficult.

 Rollback to a Safe State: To enter into the deadlock, the system goes

through several states. In this, the operating system can easily roll back the

system to the earlier safe state. To do so, we require to implement

checkpoints at every state. At the time when we detect deadlock, then we

need to rollback every allocation so that we can enter into the earlier safe

state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44

Background: Clock Cycle

• CPU speed is determined by the clock cycle.

• The clock cycle is the amount of time between two pulses of an oscillator.

• The clock speed is measured in Hz, often either megahertz (MHz) or gigahertz

(GHz).

o For example, a 4 GHz processor performs 4,000,000,000 clock cycles per second.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45

Background: CPU Cycle

• CPU cycle is also called machine cycle.

• CPU cycle refers to the time required for the execution of one simple

processor operation such as an addition.

o For an instruction cycle, we fetch an instruction and execute it, at least two CPU

cycles are required. At least one CPU cycle is required to fetch instructions, and at

least one CPU cycle is required to execute them. Complex instructions require

more CPU cycles.

• An instruction cycle may include multiple CPU cycles, and a CPU cycle

may include multiple clock cycles.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46

Background: Instruction Cycle

• Instruction cycle refers to the time taken to execute an instruction. It is the

basic operational process of a computer. This process is repeated continuously

by CPU from boot up to shut down of computer.

• The execution process of instructions is divided into the following steps:

o Fetch - The instruction is fetched from memory address that is stored in PC (Program

Counter) and stored in the Instruction Register IR.

o Decode - According to the instructions in the instruction register, decode what kind of

operation is to be parsed.

o Execute - Run the corresponding instructions to perform arithmetic and logic

operations, data transmission, etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47

Instruction Cycle, Machine Cycle and Clock Cycle

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48

Background: Memory

• Main memory and the registers built into the processor itself are the only storage that

the CPU can access directly.

• There are machine instructions that take memory addresses as arguments, but none

take disk addresses.

• Therefore, any instructions in execution, and any data being used by the instructions,

must be in one of these direct-access storage devices.

• If the data are not in memory, they must be moved there before the CPU can operate

on them.

• Registers that are built into the CPU are generally accessible within one clock cycle.

• Most CPUs can decode instructions and perform simple operations on register

contents at the rate of one or more operations per clock tick.

 The same cannot be said of main memory, which is accessed via a transaction on the

memory bus.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49

Background: Memory (contd…)

• Completing a memory access may take many clock cycles.

• In such cases, the processor normally needs to stall, since it does not

have the data required to complete the instruction that it is executing.

• This situation is intolerable because of the frequency of memory

accesses.

• The remedy is to add fast memory between the CPU and main memory.

• A memory buffer used to accommodate a speed differential, is called

cache.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50

Basic Hardware

• There are several hardware-level approaches to protect the operating system

from access by user processes and, in addition, to protect user processes from

one another.

• To make sure that each process has a separate memory space, the protection

is provided by using two registers: Base Register and Limit Register.

 For example, if the base register holds 300040 and the limit register is 120900, then the

program can legally access all addresses from 300040 through 420939 (inclusive).

 Protection of memory space is accomplished by having the CPU hardware compare every

address generated in user mode with the registers.

 Any attempt by a program executing in user mode, to access operating-system memory or

other users’ memory, results in a trap to the operating system, which treats the attempt as

a fatal error (an error that causes a program to terminate without any warning or saving its state).

o This scheme prevents a user program from (accidentally or deliberately) modifying the code or data structures of

either the operating system or other users.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51

Hardware Address Protection

• The base and limit registers can be loaded only by the operating system, which

uses a special privileged instruction.

Base and Limit Register defining a
logical address space

Hardware address protection with
Base and Limit Registers

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.52

Basic Concepts

• Address Binding

 Compile Time Binding

 Load Time Binding

 Execution Time Binding

• Logical Address and Physical Address

• Linking

 Static Linking

 Dynamic Linking

• Loading

 Static Loading

 Dynamic Loading

• Swapping

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.53

Address Binding

• The process (program) may be moved between disk and memory during its

execution.

• The processes on the disk that are waiting to be brought into memory for

execution form the input queue.

• The normal procedure is to select one of the processes in the input queue and

to load that process into memory.

• In most cases, a user program go through several steps (such as compiling,

loading, execution) before being executed.

 Addresses may be represented in different ways during these steps.

 Addresses in the source program are generally symbolic (such as count).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.54

Address Binding (contd…)

• The binding of instructions and data to memory addresses can be done

at any step along the way:

 Compile Time

 Load Time

 Execution (Run) Time

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.55

Address Binding (contd…)

• Compile Time

 If it is known at compile time where the process will reside in memory,

then absolute code (physical address is embedded) can be generated.

o For example, if it is known that a user process will reside starting at location R,

then the generated compiler code will start at that location and extend up

from there.

o If, at some later time, the starting location changes, then it will be necessary to

recompile this code.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.56

Address Binding (contd…)

• Load Time

 If it is not known at compile time where the process will reside in memory,

then relocatable code can be generated.

o In this case, final binding is delayed until load time.

o If the starting address changes, we need only reload the user code to

incorporate this changed value.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.57

Address Binding (contd…)

• Execution Time

 If the process can be moved during its execution from one memory

segment to another, then binding must be delayed until run time.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.58

Summary of Address Bindings

• Compile Time Binding: It is the translation of logical addresses to physical addresses at the time

of compilation. Now this type of binding is only possible in systems where we know the

contents of the main memory in advance and know what address in the main memory we have

to start the allocation from. Knowing both of these things is not possible in modern multi-

processing systems. So it can be safely said the compile time binding would be possible in

systems not having support for multi-processing.

• Load Time Binding: It is the translation of the logical addresses to physical addresses at the time

of loading. The relocating loader contains the base address in the main memory from where the

allocation would begin. So when the time for loading a process into the main memory comes, all

logical addresses are added to the base address by the relocating loader to generate the

physical addresses.

• Run Time Binding: In most modern processors multi-processing is supported. Therefore, there

comes the need of shifting the physical addresses from one location to another during run time.

This is taken care by the run time binding concept. It is used in Compaction to remove External

Fragmentation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.59

Logical versus Physical Address Space

• An address generated by the CPU is commonly referred to as a logical address.

 The logical address is virtual address as it does not exist physically, therefore, it is

also known as virtual address.

 This address is used as a reference to access the physical memory location by CPU.

• An address seen by the memory unit (that is, the one loaded into the memory-

address register of the memory) is referred to as a physical address.

 Physical address identifies a physical location of required data in a memory.

• The compile-time and load-time address-binding methods generate identical

logical and physical addresses.

• The execution-time address-binding scheme results in differing logical and

physical addresses.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.60

Logical and Physical Address Space

• The set of all logical addresses generated for a program’s perspective is

a logical address space.

• The set of all physical addresses corresponding to these logical

addresses is a physical address space.

• The run-time mapping from virtual to physical addresses is done by a

hardware device called the Memory-Management Unit (MMU).

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.61

Mapping from Virtual to Physical Addresses

Example: Simple MMU scheme (a generalization of the base-register scheme)

 CPU generates logical address 346.

 MMU generates relocation register (base register) 14000.

 In memory, the physical address is 14346 (346+14000).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.62

Linking

• Linking intends to generate an executable module of a program by combining

the object codes generated by the compiler or assembler.

• Linking is the process of connecting all the modules or the function of a

program for program execution.

• The linker, also known as the link editor, takes object modules from the

assembler and forms an executable file for the loader.

• Linking is classified into two types, based on the time when it is done:

 Static Linking

 Dynamic Linking

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.63

Linking (contd…)

• In the static linking, each program

binds to its dependent libraries at

compile time.

 With static linking, the user ends up

copying functions or routines that are

repetitive across various executables.

 For example: Nearly every program

needs printf() function. Thus, a copy of it

is present in all executables which wastes

space.

• In the case of dynamic linking,

programs use shared libraries, and

these libraries are linked to the

programs at run time.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.64

Dynamic Linking

• In the dynamic linking approach, the linker does not copy the routines into the

executables. It takes note that the program has a dependency on the library.

• With dynamic linking, a stub is included in the image for each library routine

reference.

 The stub is a small piece of code that indicates how to locate the appropriate memory-

resident library routine or how to load the library if the routine is not already present.

 When the stub is executed, it checks to see whether the needed routine is already in

memory. If it is not, the program loads the routine into memory.

 Under this scheme, all processes that use a language library execute only one copy of

the library code.

 This feature can be extended to library updates (such as bug fixes). A library may be

replaced by a new version, and all programs that reference the library will

automatically use the new version.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.65

Loading

• Loading is the process of loading the program from secondary memory to the

main memory for execution.

• It is necessary for the entire program and all data of a process to be in physical

memory for the process to execute.

• The size of a process has thus been limited to the size of physical memory.

• To obtain better memory-space utilization, we can use dynamic loading.

 Dynamic loading is the technique through which a computer program, at runtime, load

a library into memory, retrieve the variable and function addresses, executes the

functions, and unloads the program from memory.

 It is often used to implement software plugins.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.66

Dynamic Loading

• With dynamic loading, a routine is not loaded until it is called.

• All routines are kept on disk in a relocatable load format.

• The main program is loaded into memory and is executed.

• When a routine needs to call another routine, the calling routine first checks to

see whether the other routine has been loaded.

• If it has not, the relocatable linking loader is called to load the desired routine

into memory and to update the program’s address tables to reflect this

change. Then control is passed to the newly loaded routine.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.67

Dynamic Loading (contd…)

• Advantage of Dynamic Loading:

 An unused routine is never loaded.

 This method is particularly useful when large amounts of code are needed to handle

infrequently occurring cases, such as error routines.

 In this case, although the total program size may be large, the portion that is used (and

hence loaded) may be much smaller.

• Dynamic loading does not require special support from the operating system.

• It is the responsibility of the users to design their programs to take advantage of

such a method.

• Operating systems may help the programmer, however, by providing library

routines to implement dynamic loading. Loading Examples of Java:

Class.forName (String className); //Dynamic Loading TestClass tc = new TestClass(); //Static Loading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.68

Swapping

• A process must be in memory to be

executed.

• A process can be swapped temporarily

out of memory to a backing store and

then brought back into memory for

continued execution.

• Example: Assume a multiprogramming

environment with a round-robin CPU-

scheduling algorithm. When a

quantum expires, the memory

manager will start to swap out the

process that just finished and to swap

another process into the memory

space that has been freed.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.69

Swapping (contd…)

• A variant of swapping policy is used for priority-based scheduling algorithms.

• If a higher-priority process arrives and wants service, the memory manager

can swap out the lower-priority process and then load and execute the higher-

priority process.

• When the higher-priority process finishes, the lower-priority process can be

swapped back in and continued.

• This variant of swapping is sometimes called roll out, roll in.

• Normally, a process that is swapped out will be swapped back into the same

memory space it occupied previously.

• This restriction is dictated by the method of address binding. If binding is done at assembly or

load time, then the process cannot be easily moved to a different location. If execution-time

binding is being used, then a process can be swapped into a different memory space, because

the physical addresses are computed during execution time.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.70

Swapping (contd…)

• Swapping requires a backing store (a fast disk, large enough to accommodate

copies of all memory images, and it must provide direct access to these

memory images).

• System maintains a ready queue consisting of all processes whose memory

images are on the backing store or in memory and are ready to run.

• Whenever the CPU scheduler decides to execute a process, it calls the

dispatcher.

• The dispatcher checks to see whether the next process in the queue is in

memory.

• If it is not, and if there is no free memory region, the dispatcher swaps out a

process currently in memory and swaps in the desired.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.71

Memory Management Techniques

• There are two techniques for memory management:

 Contiguous Memory Allocation

 Non-Contiguous Memory Allocation

• In Contiguous Memory Allocation, the process must be loaded entirely

in main-memory at contiguous locations.

• In Non-Contiguous Memory Allocation, the process is loaded in several

memory blocks at different memory locations in the memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.72

Contiguous Memory Allocation

• A single contiguous section/part of memory is allocated to a process or

file needing it.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.73

Non-Contiguous Memory Allocation

• The process is loaded in several memory blocks at different memory

locations in the memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.74

Contiguous Memory Allocation

• In contiguous memory allocation, each process is contained in a single

contiguous block of memory.

• Discuss -

 Memory Mapping and Protection

 Partitioning

 Allocation Policies

 Performance Parameters

o Fragmentation

o Maximum Process Size

o Degree of Multiprogramming

o Allocation Policy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.75

Memory Mapping and Protection

 • These features can be provided by using a relocation register together with a

limit register.

 The relocation register contains the value of the smallest physical address; the limit

register contains the range of logical addresses (for example, relocation = 100040 and limit

= 74600).

 When the CPU scheduler selects a process for execution, the dispatcher loads the

relocation and limit registers with the correct values as part of the context switch.

 Every address generated by a CPU is checked against these registers, we can protect both

the operating system and other users’ programs and data from being modified by this

running process.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.76

Memory Allocation

 • Dividing memory into several partitions is one of the simplest methods

for allocating memory.

 Each partition may contain exactly one process.

 When a partition is free, a process is selected from the input queue and is

loaded into the free partition.

 When the process terminates, the partition becomes available for another

process.

• Partitioning can be done in two ways:

 Fixed (Static) Partitioning

 Variable (Dynamic) Partitioning

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.77

Memory Allocation Policies

• The memory blocks available comprise a set of holes of various sizes

scattered throughout memory. When a process arrives and needs memory,

the system can search an appropriate hole with following policies:

 First-Fit - Allocate the first hole that is big enough. Searching can start either at

the beginning of the set of holes or at the location where the previous first-fit

search ended.

 Best-Fit - Allocate the smallest hole that is big enough. We must search the

entire list, unless the list is ordered by size. This strategy produces the smallest

leftover hole.

 Worst-Fit - Allocate the largest hole. Again, we must search the entire list,

unless it is sorted by size. This strategy produces the largest leftover hole.

 Next-Fit - It is similar to the first fit but it will search for the first sufficient

partition from the last allocation point.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.78

Memory Allocation Policies: First Fit

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.79

Memory Allocation Policies: Best-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.80

Memory Allocation Policies: Worst-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.81

Fragmentation

• Internal Fragmentation

 Memory block allocated is slightly larger than request memory, therefore,

some portion of memory is left unused, as it cannot be used by another

process.

 The internal fragmentation can be reduced by effectively assigning the

smallest partition but large enough for the process.

• External Fragmentation

 Total memory space exists to satisfy a request, but it is not contiguous.

 The external fragmentation may be reduced by compaction (also known as

defragmentation) – shuffle memory contents to place all free memory

together in one large block.

 Compaction is possible only if relocation is dynamic, and is done at execution

time.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.82

Fragmentation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.83 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.83

Compaction

• If processes are relocatable, the used memory blocked may be moved

together to make a larger free memory block.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.84 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.84

Fixed Partitioning

 • In this partitioning, number of partitions in

memory are fixed but size of each partition

may or may not be same.

• As it is contiguous allocation, hence no

spanning is allowed.

• Here, partition are made before execution

or during system configure.

• Sum of internal fragmentation in every block

= (4-1)+(8-7)+(8-7)+(16-14) = 3 + 1 + 1 + 2 =

7MB.

• Suppose a process P5 of size 7MB comes. But, this

process cannot be accommodated inspite of available

free space because of contiguous allocation. Hence,

7MB becomes part of External Fragmentation.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.85 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.85

Advantages/Disadvantages of Fixed Partitioning

• Advantages

 Easy to implement

 Little OS overhead

• Disadvantages

 Internal fragmentation

 External fragmentation

 Limit process size - Process of size greater than size of partition in Main Memory

cannot be accommodated.

 Limitation on degree of multiprogramming

• Best Allocation Policy

 Best-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.86 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.86

Variable Partitioning

• This partitioning tries to overcome the problems caused by fixed partitioning.

• In this technique, the partition size is not declared initially.

• It is declared at the time of process loading.

• The partition size varies according to the need of the process so that the

internal fragmentation can be avoided.

• The size of each partition will be equal to the size of the process.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.87 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.87

Advantages/Disadvantages of Variable Partitioning

• Advantages

 No internal fragmentation

 No limitation on the size of the process

 Degree of multiprogramming is dynamic

• Disadvantages

 External fragmentation

• Best Allocation Policy

 Worst-Fit

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.88 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.88

Advantages/Disadvantages of Variable Partitioning

• External Fragmentation

 Suppose, Process P1 (2MB) and process P3

(1MB) completed their execution. Hence

two spaces are left, i.e. 2MB and 1MB.

 Let’s suppose process P5 of size 3MB comes.

The empty space in memory cannot be

allocated as no spanning is allowed in

contiguous allocation.

 The rule says that process must be

contiguously present in main memory to get

executed.

 Hence, variable partitioning may result in

external fragmentation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.89 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.89

Example - 1

Consider the following heap in which blank regions are not in use and

shaded regions are in use.

The sequence of requests for blocks of size 300, 25, 125, 50 can be

satisfied if we use:

a) either First-fit or Best-fit policy.

b) First-fit but not Best-fit

c) Best-fit but not First-fit

d) None of these

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.90 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.90

Example - 2

Consider a system in which the memory consists of the following free

holes:

Sizes in Memory Order: 15K, 5K, 20K, 4K and 7K

Which hole is taken for successive segment request of 12K, 7K and 15K for

Next-Fit. Assuming that the last process was swapped in just before the

5K hole.

a) 15K, 20K, Out of Memory

b) 15K, 7K, 20K

c) 20K, 7K, 15K

d) 15K, 7K, 20K

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.91 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.91

Paging

• Paging is a memory-management scheme that permits the physical

address space of a process to be non-contiguous.

• Paging avoids external fragmentation and the need for compaction.

• Paging in its various forms is used in most operating systems.

• Implementation of paging involves dividing the process into blocks of the

same size called pages which are mapped to same size blocks on physical

memory called frames.

 Physical Memory Blocks --> Frames

 Logical Memory Blocks --> Pages

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.92 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.92

Paging (contd…)

• In every non-contiguous memory management technique, we need to

consider the following points:

 Organization of Logical Address Space (LAS)

 Organization of Physical Address Space (PAS)

 Organization of Memory Management Unit (MMU)

 Translation Algorithm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.93 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.93

Paging (contd…)

• Address generated by CPU is divided into:

 Page number (p): Number of bits required to represent the pages in Logical

Address Space.

 Page offset (d): Number of bits required to represent particular word in a

page or word number of a page.

• Physical Address is divided into:

 Frame number (f): Number of bits required to represent the frame of

Physical Address Space.

 Frame offset (d): Number of bits required to represent particular word in a

frame or word number of a frame.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.94 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.94

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.95 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.95

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.96 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.96

Paging (contd…)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.97 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.97

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.98 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.98

Paging (contd…)

Let, LAS = 8 KB, PAS = 4 KB, PS (Page Size) = 1KB, 1Word = 1 Byte

Note: LAS = 2LA and PAS = 2PA, LAS & PAS is in words and LA & PA is in bits.

Organization of Memory Management Unit (MMU)

• In paging, it is Page Table.

• Number of entries in Page Table is equal to number of pages in LAS.

• Page table contains frame number and other bits (valid/invalid bit, protection

bit, modified bit, etc.)

• Each process has its page table.

• Page table also resides in main memory.

• Page Table Size = N * e (entry size)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.99 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.99

Paging (contd…)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.100 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.100

Paging: Example - 1

• Consider a system supporting,

 LA = 32 Bits,

 PA = 27 Bits,

 PS = 4KB,

 Page Table Entry Size (e) = 3 Byte

• What is Page Table Size?

 Page Table Size = 𝑁 × 𝑒

 𝑁 =
𝐿𝐴𝑆

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

2𝐿𝐴

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

232

212

 Page Table Size =
232

212 × 3 = 220 × 3 = 1024 × 1024 × 3 Bytes

 = 31,45,728 Bytes  3 MB

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.101 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.101

Paging: Example - 2

• Consider a system with 2K Pages, 512 Frames, Page Offset = 9 Bits, and e

= 4 Bytes. Determine p, f, LAS, PAS and Page Table Size.

 Given, Number of Pages N = 2K = 2048 = 211

 Number of Frames M = 512

 Page Offset d = 9 Bits

 Each Entry Size of Page Table e = 4 Bytes

 𝑝 = 𝑙𝑜𝑔2𝑁 = 𝑙𝑜𝑔22048 = 11

 𝑓 = 𝑙𝑜𝑔2𝑀 = 𝑙𝑜𝑔2512 = 9

 𝐿𝐴𝑆 = 2𝐿𝐴 = 2(𝑝:𝑑) = 2(11:9) = 220

 𝑃𝐴𝑆 = 2𝑃𝐴 = 2(𝑓:𝑑) = 2(9:9) = 218

 𝑃𝑎𝑔𝑒 𝑇𝑎𝑏𝑙𝑒 𝑆𝑖𝑧𝑒 = 𝑁 × 𝑒 = 211 × 4 = 2048 × 4 Bytes = 8192 Bytes = 8KB

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.102 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.102

Paging: Example - 3

• Consider a system with 35 Bits LA, 32 Bits PA, 4KB Page Size, and each Table Entry

contains 2 Protection Bits, 1 Valid/Invalid Bit, and 1 Modified Bit along with Frame

Number. What is Page Table Size?

No. of Pages (N) =
𝐿𝐴𝑆

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

2𝐿𝐴

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

235

212 =223

No. of Frames (M) =
𝑃𝐴𝑆

𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒
 =

2𝑃𝐴

𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒
 =

232

212 =220

No. of Bits required to Represent Frame No. (f) = 𝑙𝑜𝑔2𝑀 = 𝑙𝑜𝑔2220 = 20

Size of Each Entry in Table = 20 + 2 + 1 + 1 = 24 Bits

Page Table Size = 𝑁 × 𝑒 = 223 × 3 Bytes = 83,88,608 × 3 Bytes = 24 MB

Bits to Represent Frame No. (f) Protection Bits Valid/Invalid Bit Modified Bit

Size of Each Entry in Table

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.103 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.103

Hardware Implementation for Page Table

• Approach - 1

 The page table can be implemented as a set of dedicated registers.

 These registers should be built with very high-speed logic to make the

paging-address translation efficient. Every access to memory must go

through the paging map, so efficiency is a major consideration.

 The use of registers for the page table is satisfactory if the page table is

reasonably small (for example, 256 entries).

 Most contemporary computers, however, allow the page table to be very

large (for example, 1 million entries).

 For these machines, the use of fast registers to implement the page table

is not feasible.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.104 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.104

Hardware Implementation for Page Table

• Approach - 2

 The page table is kept in main memory, and a page-table base register

(PTBR) points to the page table.

 The problem with this approach is the time required to access a memory

location.

 If we want to access location i, we must first index into the page table,

using the value in the PTBR offset by the page number for i.

 It provides us with the frame number; we can then access the desired

place in memory.

 In this approach, two memory accesses are needed to access a byte (one

for the page-table entry, one for the byte). Thus, memory access is slowed

by a factor of 2.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.105 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.105

Hardware Implementation for Page Table

• Approach – 3 (Standard Approach)

 Use of a special, small, fast lookup hardware cache, called a translation

look-aside buffer (TLB).

 The TLB is associative, high-speed memory.

 TLB consists of two columns: Page Number (Key) and Frame Number

(Value).

 The item is compared with all keys simultaneously.

o If the item is found, the corresponding value field is returned.

o The search is fast; the hardware is expensive.

o Typically, the number of entries in a TLB is small, often numbering between 64 and

1,024.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.106 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.106

Using TLB with Page Table

• The TLB contains only a few of the page-table entries.

• When a logical address is generated by the CPU, its page number is presented

to the TLB.

 If the page number is found, its frame number is immediately available and is

used to access memory.

 If the page number is not in the TLB (known as a TLB miss), a memory reference

to the page table must be made. In addition, we add the page number and frame

number to the TLB, so that they will be found quickly on the next reference.

 If the TLB is already full of entries, the operating system must select one for

replacement. Replacement policies range from least recently used (LRU) to

random. Furthermore, some TLBs allow certain entries to be wired down,

meaning that they cannot be removed from the TLB. Typically, TLB entries for

kernel code are wired down.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.107 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.107

Using TLB with Page Table

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.108 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.108

CPU Cache and TLB

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.109 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.109

Effective Access Time

• The percentage of times that a particular page number is found in the

TLB is called the hit ratio.

• For example, an 80-percent hit ratio means that we find the desired

page number in the TLB, 80 percent of the time.

 If it takes 20 nanoseconds to search the TLB and 100 nanoseconds to

access memory, then a mapped-memory access takes 120 nanoseconds

when the page number is in the TLB.

 If we fail to find the page number in the TLB (20 nanoseconds), then we

must first access memory for the page table and frame number (100

nanoseconds) and then access the desired byte in memory (100

nanoseconds), for a total of 220 nanoseconds.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.110 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.110

Effective Access Time - Example

Effective Access Time =

Hit Ratio * (Access Time of TLB + Access Time of Memory)

+

 Miss Ratio * (Access Time of TLB + Access Time for Page Table + Access Time of Memory)

Question 1: A paging scheme uses a Translation Look-a-side buffer (TLB). A TLB access

takes 10 ns and a main memory access takes 50 ns. What is the effective access time (in

ns) if the TLB hit ratio is 90% and there is no page fault?

Answer: 54, 60, 65, 75

Question 2: A paging scheme uses a Translation Look-a-side buffer (TLB). The effective

memory access takes 160 ns and a main memory access takes 100 ns. What is the TLB

access time (in ns) if the TLB hit ratio is 60% and there is no page fault?

Answer: 54, 60, 20, 75

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.111 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.111

Protection in Paging: Protection Bit

• Memory protection in a paged environment is accomplished by

protection bit associated with each frame.

• One bit can define a page to be read–write or read-only.

 At the same time that the physical address is being computed, the protection bits

can be checked to verify that no writes are being made to a read-only page.

 An attempt to write to a read-only page causes a hardware trap to the operating

system.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.112 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.112

Protection in Paging: Valid–Invalid Bit

• One additional bit is generally attached to each entry in the page table:

a valid–invalid bit.

 When this bit is set to “valid,” the associated page is in the process’s logical

address space and is thus a legal (or valid) page.

 When the bit is set to “invalid,” the page is not in the process’s logical address

space.

 The OS sets this bit for each page to allow or disallow access to the page.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.113 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.113

Protection in Paging: Valid–Invalid Bit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.114 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.114

Structure of Page Table

• Hierarchical (Multi-Level) Paging

• Hashed Page Tables

• Inverted Page Tables

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.115 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.115

Hierarchical (Multi-Level) Paging

• Consider a system with a 32-bit logical address space.

 If the page size in such a system is 4 KB (212), then a page table may consist of up

to 1 million entries 232/212).

 Assuming that each entry consists of 4 bytes, each process may need up to 4MB

of physical address space for the page table alone.

 If we would not want to allocate the page table contiguously in main memory,

the solution is to divide the page table into smaller pieces.

o One way is to use a two-level paging algorithm, in which the page table itself is also paged.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.116 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.116

Hierarchical (Multi-Level) Paging

A two-level page-table scheme

 Consider a system with a 32-bit logical

address space and 4KB page size:

 A logical address is divided into a

page number consisting of 20 bits

and a page offset consisting of 12

bits. Because we page the page

table, the page number is further

divided into a 10-bit page number

and a 10-bit page offset.

 Thus, a logical address is as follows:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.117 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.117

Two-Level 32-Bit Paging Architecture

Address Translation Process

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.118 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.118

Hierarchical (Multi-Level) Paging

For a system with a 64-bit logical address space, is a two-level paging
scheme appropriate?

• To illustrate this point, let us

suppose that the page size in such a

system is 4 KB (212).

• In this case, the page table consists

of up to 252 entries.

• If we use a two-level paging

scheme, then the inner page tables

can conveniently be one page long,

or contain 210 4-byte entries.

The outer page table is still 234 bytes in size.

The next step would be a four-level paging
scheme,

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.119 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.119

Hashed Page Tables

 A common approach for handling address spaces larger than 32 bits is to use a hashed

page table, with the hash value being the virtual page number.

 Each entry in the hash table contains a linked list of elements that hash to the same

location (to handle collisions).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.120 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.120

Inverted Page Table

 An inverted page table has one entry for each real page (or frame) of memory.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.121 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.121

Shared Pages

• An advantage of paging is the possibility of sharing common code, particularly

in a time-sharing environment.

• Consider a system that supports 40 users, each of whom executes a text

editor. If the text editor consists of 150 KB of code and 50 KB of data space,

we need 8,000 KB to support the 40 users.

• In shared mode, only one copy of the editor need be kept in physical memory.

• Each user’s page table maps onto the same physical copy of the editor, but

data pages are mapped onto different frames.

• Thus, to support 40 users, we need only one copy of the editor (150 KB), plus

40 copies of the 50 KB of data space per user. The total space required is now

2,150 KB instead of 8,000 KB—a significant savings.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.122 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.122

Shared Pages (contd…)

Sharing of Code in a Paging Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.123 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.123

Limitations of Paging

• Internal Fragmentation

 If the memory requirements of a process do not happen to coincide with page boundaries,

the last frame allocated may not be completely full.

 Example: If page size is 2048 bytes, a process of 72,766 bytes will need 35 pages plus 1,086

bytes. It will be allocated 36 frames, resulting in internal fragmentation of 2,048 − 1,086 =

962 bytes.

 If process size is independent of page size, we expect internal fragmentation to average

one-half page per process.

 This consideration suggests that small page sizes are desirable. However, overhead is

involved in each page-table entry, and this overhead is reduced as the size of the pages

increases. Also, disk I/O is more efficient when the amount of data being transferred is

larger.

• Larger Access Time

• Memory Required for Page Table

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.124 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.124

Segmentation

• In Paging, the user’s view of memory

is not the same as the actual physical

memory.

• Users do not think of memory as a

linear array of bytes, some containing

instructions and others containing

data.

• Rather, users prefer to view memory

as a collection of variable-sized

segments (methods, stack, etc.), with

no necessary ordering among

segments.
User’s View of a Program

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.125 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.125

Segmentation (contd…)

• Segmentation is a memory-management scheme that supports user’s

view of memory.

• A logical address space is a collection of segments.

• Each segment has a name and a length.

• The addresses specify both the segment number and the offset within

the segment.

 Elements within a segment are identified by their offset from the

beginning of the segment: the first statement of the program, the seventh

stack frame entry in the stack, the fifth instruction of the Sqrt(), and so on.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.126 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.126

Segmentation (contd…)

• While compiling, the compiler automatically constructs segments

reflecting the input program.

• A ‘C’ compiler might create separate segments for the following:

 The code

 Global variables

 The heap, from which memory is allocated

 The stacks used by each thread

 The standard C library

 Libraries that are linked in during compile time

• The loader takes all these segments and assign them segment numbers.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.127 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.127

Segmentation (contd…)

• Each entry in the segment table has a segment base and a segment

limit.

 The segment base contains the starting physical address where the

segment resides in memory.

 The segment limit specifies the length of the segment.

• A logical address consists of two parts:

 A segment number (s), and

 An offset into that segment (d)

• The segment number is used as an index to the segment table.

• The offset d of the logical address must be between 0 and the segment

limit. If it is not, we trap to the operating system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.128 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.128

Segmentation (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.129 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.129

Segmentation (contd…)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.130 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.130

Limitations of Segmentation

• External Fragmentation

 To deal with external fragmentation, the Segmentation can be combined

with Paging, also known as Segmented Paging.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.131 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.131

Virtual Memory

• Virtual memory is a technique that allows the execution of processes

that are not completely in memory.

• One major advantage of this scheme is that programs can be larger

than physical memory.

• Virtual memory gives an illusion to the user/programmer that huge

amount memory is available for executing its process.

• Virtual memory can be implemented through demand paging.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.132 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.132

Demand Paging

• Demand Paging

 Pure Demand Paging - Never bring a page into memory until it is required

 Pre-fetched Demand Paging

• A demand-paging system is similar to a paging system with swapping.

• Types of Pages

 Modified Page or Dirty Page

 Clean Page

• Page Fault Service Time

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.133 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.133

Hardware Support for Demand Paging

• Page Table

• Secondary Memory

 This memory holds those pages that are not present in main memory.

 The secondary memory is usually a high-speed disk.

 It is known as the swap device, and the section of disk used for this

purpose is known as swap space.

Note: To implement demand paging, we must develop a frame-allocation

algorithm and a page-replacement algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.134 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.134

Page Table when some Pages are not in Main Memory

 To distinguish between the

pages that are in memory and

the pages that are on the disk,

we need some form of

hardware support.

 The valid–invalid bit scheme

can be used for this purpose.

 When this bit is set to “valid,”

the associated page is in

memory.

 If the bit is set to “invalid”, the

page is currently on the disk.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.135 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.135

Steps in Handling a Page Fault

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.136 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.136

Performance of Virtual Memory

• Let

 Main Memory Access Time (MMAT) = M

 Page Fault Rate (PFR) = P

 Page Fault Service Time (PFST) = S

 Effective Memory Access Time (EMAT) = P*S+(1-P)*M

• If MMAT = 200 microsecond, PFR = 25%, PFST = 1 millisecond, then what is

EMAT (in Microsecond)?

 EMAT = 0.25*1000 + 0.75*200 = 250 + 150 = 400 Microsecond

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.137 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.137

Performance of Virtual Memory

• If MMAT (M) = 1 microsecond, PFST (S) = 10 Millisecond, Hit Ratio = 99.99%,

the what is EMAT (in Microsecond)?

 If Hit Ratio = 99.99, then P = 0.01%

 Therefore, EMAT = 0.0001*10000 + (1-0.0001)*1 =

 = 1 + 0.9999 = 1.9999 Microsecond

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.138 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.138

Page Replacement

1) Find the location of the desired page on the disk.

2) Find a free frame:

a) If there is a free frame, use it.

b) If there is no free frame, use a page-replacement algorithm to select a victim

frame.

c) Write the victim frame to the disk (If dirty); change the page and frame tables

accordingly.

3) Bring the desired page into the (newly) freed frame; change the page and

frame tables.

4) Continue the process by restarting the instruction that caused the trap.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.139 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.139

Page Replacement (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.140 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.140

Page Replacement Algorithms

• First-Come, First-Out

• Optimal Page Replacement

• Least Recently Used

We can evaluate an algorithm by running it on a particular string of

memory references and computing the number of page faults.

• The string of memory references is called a reference string.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.141 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.141

Page Replacement Algorithm: First-Come, First-Out

• We can create a FIFO queue to hold all pages in memory. We replace the

page at the head of the queue. When a page is brought into memory, we

insert it at the tail of the queue.

Q. Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page frames. Find

number of page faults.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.142 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.142

Page Replacement Algorithm: First-Come, First-Out

Q. Consider page reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 with 3 page

frames. Find number of page faults.

Q. Consider page reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 with 4 page

frames. Find number of page faults.

Belady’s Anomaly – For some page-replacement algorithms, the page-

fault rate may increase as the number of allocated frames increases.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.143 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.143

Page Replacement Algorithm: Optimal Page Replacement

Replace the page that will not be used for the longest period of time.

 Use of this page-replacement algorithm guarantees the lowest possible page

fault rate for a fixed number of frames.

 Unfortunately, the optimal page-replacement algorithm is difficult to

implement, because it requires future knowledge of the reference string.

 The optimal algorithm is used mainly for comparison studies.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.144 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.144

Page Replacement Algorithm: Optimal Page Replacement

Q. Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page

frame. Find number of page fault using optimal page replacement algorithm.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.145 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.145

Page Replacement Algorithm: Least-Recently-Used (LRU)

Replace the page that has not been used for the longest period of time.

 LRU replacement associates with each page the time of that page’s last use.

 When a page must be replaced, LRU chooses the page that has not been used

for the longest period of time.

 This strategy can be considered as the optimal page-replacement algorithm

looking backward in time, rather than forward.

 The LRU policy is often used as a page-replacement algorithm and is

considered to be good.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.146 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.146

Page Replacement Algorithm: LRU Example

Q. Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 4 page

frames. Find number of page faults using least-recently-used algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.147 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.147

Allocation of Frames

• How do we allocate the fixed amount of free memory among the

various processes?

 The minimum number of frames per process is defined by the

architecture.

 The maximum number is defined by the amount of available

physical memory.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.148 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.148

Allocation of Frames: Equal Allocation

• The easiest way to split m frames among n processes is to give

everyone an equal share, m/n frames.

• For instance, if there are 93 frames and five processes, each process

will get 18 frames. The three leftover frames can be used as a free-

frame buffer pool.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.149 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.149

Allocation of Frames: Proportional Allocation

• Consider a system with a 1-KB frame size.

 If a small student process of 10 KB and an interactive database of 127 KB

are the only two processes running in a system with 62 free frames, it

does not make much sense to give each process 31 frames.

 The student process does not need more than 10 frames, so the other 21

are, strictly speaking, wasted.

• To solve this problem, we can use proportional allocation, in which we

allocate available memory to each process according to its size.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.150 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.150

Allocation of Frames: Global vs. Local Allocation

• With multiple processes competing for frames, we can classify page-

replacement algorithms into two broad categories:

 Global Replacement

o It allows a process to select a replacement frame from the set of all frames,

even if that frame is currently allocated to some other process; that is, one

process can take a frame from another.

o We may allow high-priority processes to select frames from low-priority

processes for replacement.

 Local Replacement

o It allows that that each process select from only its own set of allocated

frames.

o With a local replacement strategy, the number of frames allocated to a

process does not change.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.151 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.151

Thrashing

• If the process does not have the number of frames it needs to support

pages in active use, it will quickly page-fault.

• At this point, it must replace some page.

• However, since all its pages are in active use, it must replace a page that

will be needed again right away.

• Consequently, it quickly faults again, and again, and again, replacing pages

that it must bring back in immediately.

• This high paging activity is called thrashing.

• A process is thrashing if it is spending more time in paging than executing.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.152 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.152

Thrashing (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.1

Operating Systems with Linux

(MCA-105)

Unit – 3

by

Dr. Sunil Pratap Singh
(Associate Professor, BVICAM, New Delhi)

2023

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2

Deadlock

 In a multiprogramming environment,

several processes may compete for a

finite number of resources.

 A process requests resources; if the

resources are not available at that

time, the process enters a waiting

state.

 Sometimes, a waiting process is never

again able to change state, because

the resources it has requested are

held by other waiting processes.

 This situation is called a deadlock.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3

Deadlock (contd…)

 Deadlock can be defined as the permanent blocking of a set of

processes that either compete for system resources or communicate

with each other.

 A set of processes is deadlocked when each process in the set is blocked

awaiting an event (typically the freeing up of some requested resource)

that can only be triggered by another blocked process in the set.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4

System Model

 A system consists of a finite number of resources to be distributed

among a number of competing processes.

 The resources are partitioned into several types, each consisting of some number

of identical instances.

 Memory space, CPU cycles, files, and I/O devices (such as printers and DVD drives)

are examples of resource types.

 If a system has two CPUs, then the resource type CPU has two instances.

 Similarly, the resource type printer may have five instances.

 If a process requests an instance of a resource type, the allocation of any instance

of the type will satisfy the request.

 If it will not, then the instances are not identical, and the resource type classes

have not been defined properly.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5

System Model (contd…)

• A process may utilize a resource in only the following sequence:

 Request - The process requests the resource. If the request cannot be

granted immediately (for example, if the resource is being used by another

process), then the requesting process must wait until it can acquire the

resource.

 Use - The process can operate on the resource (for example, if the

resource is a printer, the process can print on the printer).

 Release - The process releases the resource.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6

System Model (contd…)

• The request and release of resources are system calls.

 Examples: request() and release() device, open() and close() file, and

allocate() and free() memory works as system calls.

• Request and release of resources that are not managed by the operating

system can be accomplished through the wait() and signal() operations on

semaphores.

• The resources may be either physical resources (printers, tape drives, memory

space, and CPU cycles) or logical resources (files, semaphores, and monitors).

• Deadlocks may involve same resource type (Printer) or different resource

types (Printer and DVD drive).

• Multithreaded programs are good candidates for deadlock because multiple

threads can compete for shared resources.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7

Deadlock Characterization

• Necessary and Sufficient Conditions - A deadlock situation arises if the

following four conditions hold simultaneously in a system:

 Mutual Exclusion - Only one process at a time can use the resource.

 Hold and Wait - A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

 No-Preemption - Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has

completed its task.

 Circular Wait - A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1

is waiting for a resource held by Pn, and Pn is waiting for a resource held by P0.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8

Methods for Handling Deadlocks

• Deadlock Ignorance

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection and Recovery

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9

Deadlock Ignorance

• We can ignore the problem altogether and pretend that deadlocks never

occur in the system.

• This approach is used by most operating systems, including UNIX and

Windows; it is then up to the application developer to write programs

that handle deadlocks.

 There is always a tradeoff between Correctness and Performance. The operating systems

like Windows and Linux mainly focus upon performance. However, the performance of the

system decreases if it uses deadlock handling mechanism all the time if deadlock happens 1

out of 100 times then it is completely unnecessary to use the deadlock handling mechanism

all the time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10

Deadlock Prevention

• If we can be able to violate one of the four necessary conditions and don’t let

them occur together then we can prevent the deadlock.

 Mutual Exclusion

o If we can be able to violate resources behaving in the mutually exclusive manner then the

deadlock can be prevented.

o For a device like printer, Spooling can work - a memory is associated with the printer which

stores jobs from each of the process into it. The printer collects all the jobs and print each

one of them according to FCFS. By using this mechanism, the process doesn’t have to wait

for the printer and it can continue whatever it was doing.

o Although, Spooling can be an effective approach to violate mutual exclusion but it suffers

from two kinds of problems: (1) This cannot be applied to every resource, and (2) After some

point of time, there may arise a race condition between the processes to get space in that

spool.

o We cannot force a resource to be used by more than one process at the same time.

Therefore, we cannot violate mutual exclusion for a process practically.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11

Deadlock Prevention (contd…)

• Hold and Wait

o The hold-and-wait condition can be prevented by requiring that a process

request all of its required resources at one time and blocking the process

until all requests can be granted simultaneously.

o This approach is inefficient in two ways:

1) First, a process may be held up for a long time waiting for all of its resource

requests to be filled, when in fact it could have proceeded with only some of

the resources.

2) Resources allocated to a process may remain unused for a considerable

period, during which time they are denied to other processes.

o Another problem is that a process may not know in advance all of the

resources that it will require.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12

Deadlock Prevention (contd…)

• No-Preemption

o If a process holding certain resources is denied a further request, that

process must release its original resources and, if necessary, request

them again together with the additional resource.

o If a process requests a resource that is currently held by another process,

the operating system may preempt the second process and require it to

release its resources.

o This approach is practical only when applied to resources whose state can

be easily saved and restored later, as is the case with a processor.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13

Deadlock Prevention (contd…)

• Circular Wait

o The circular-wait condition can be prevented by defining a linear ordering

of resource types.

o If a process has been allocated resources of type R, then it may

subsequently request only those resources of types following R in the

ordering.

o This approach may be inefficient, slowing down processes and denying

resource access unnecessarily.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14

Deadlock Avoidance

• Deadlock avoidance allows the three necessary conditions but makes

judicious choices to assure that the deadlock point is never reached.

• With deadlock avoidance, a decision is made dynamically whether the

current resource allocation request will, if granted, potentially lead to a

deadlock.

• Deadlock avoidance thus requires knowledge of future process resource

requests.

• Approaches to deadlock avoidance:

 Process Initiation Denial

 Resource Allocation Denial

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15

Process Initiation Denial

Consider a system with n processes and m different types of resources.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16

• The following relationship holds:

• With these quantities defined, we can define a deadlock avoidance policy

that refuses to start a new process if its resource requirements might lead

to deadlock.

• Start a new process Pn+1 only if

Process Initiation Denial (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17

Resource Allocation Denial (Banker’s Algorithm)

• Why Banker’s algorithm is named so?

 Banker’s algorithm is named so because it is used in banking system to check

whether loan can be sanctioned to a person or not.

 The customers who wish to borrow money corresponds to processes and the

money to be borrowed corresponds to resources.

 Suppose there are n number of account holders in a bank and the total sum of their

money is S. If a person applies for a loan then the bank first subtracts the loan

amount from the total money that bank has and if the remaining amount is greater

than S then only the loan is sanctioned. It is done because if all the account holders

comes to withdraw their money then the bank can easily do it.

 In other words, the bank would never allocate its money in such a way that it can

no longer satisfy the needs of all its customers. The bank would try to be in safe

state always.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18

Banker’s Algorithm

• Consider a system with a fixed number of processes and a fixed number

of resources.

• At any time a process may have zero or more resources allocated to it.

• The state of the system reflects the current allocation of resources to

processes.

 The state consists of the two vectors, Resource and Available, and the two

matrices, Claim and Allocation.

 A state of the system is called safe if the system can allocate all the

resources requested by all the processes without entering into deadlock.

 If the system cannot fulfill the request of all processes then the state of the

system is called unsafe.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19

Banker’s Algorithm (contd…)

• Banker’s algorithm is a deadlock avoidance and resource allocation

algorithm.

• When a process makes a request for a set of resources, assume that the

request is granted, update the system state accordingly, and then

determine if the result is a safe state.

• If so, grant the request and, if not, block the process until it is safe to

grant the request.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20

Banker’s Algorithm – Example 1

Initial State

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21

Banker’s Algorithm – Example 1 (contd..)

P2 runs to completion

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22

Banker’s Algorithm – Example 1 (contd..)

P1 runs to completion

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23

Banker’s Algorithm – Example 1 (contd..)

P3 runs to completion, similarly P4 will also run to completion.

It is clear that the given state is safe state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24

Banker’s Algorithm – Example 2

Given the initial state, assume that P1 has an additional unit of R1 and R3.
Determine the state of the system.

Initial State

If we assume that the request is granted, the state will be as shown in next slide.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25

Banker’s Algorithm - Example 2 (contd..)

P1 requests one additional unit of R1 and R3

Is this a safe state? The answer is no, because each process will need at least one

additional unit of R1, and there are none available.

Thus, on the basis of deadlock avoidance, the request by P1 should be denied and P1

should be blocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26

Deadlock Detection and Recovery

• In this approach, the operating system does not apply any mechanism to

avoid or prevent the deadlocks.

• Therefore, the system considers that the deadlock will definitely occur.

• In order to get rid of deadlocks, the operating system periodically checks

the system for any deadlock.

• In case, it finds any of the deadlock, then, the operating system will

recover the system using some recovery techniques.

• The main task of the operating system is detecting the deadlocks. The

operating system can detect the deadlocks with the help of Resource

Allocation Graph.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27

Deadlock Detection and Recovery (contd..)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28

Resource-Allocation Graph

• Deadlocks can be described more precisely in terms of a directed graph,

called a system Resource-Allocation Graph:

 This graph consists of a set of vertices V and a set of edges E.

 The set of vertices V is partitioned into two different types of nodes:

o P = {P1, P2, ..., Pn}, the set consisting of all the active processes in the system.

o R = {R1, R2, ..., Rm}, the set consisting of all resource types in the system.

 A directed edge from process Pi to resource type Rj is denoted by Pi → Rj (request

edge); it signifies that process Pi has requested an instance of resource type Rj and

is currently waiting for that resource.

 A directed edge from resource type Rj to process Pi is denoted by Rj → Pi

(assignment edge); it signifies that an instance of resource type Rj has been

allocated to process Pi .

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29

Resource-Allocation Graph (contd…)

• Each process Pi is represented as a circle and each resource type Rj is

represented as a rectangle.

 Resource type Rj may have more than one instance, each instance is represented

as a dot within the rectangle.

 A request edge points to only the rectangle Rj, whereas an assignment edge must

also designate one of the dots in the rectangle.

• When process Pi requests an instance of resource type Rj, a request edge is

inserted in the resource-allocation graph.

• When this request can be fulfilled, the request edge is instantaneously

transformed to an assignment edge.

• When the process no longer needs access to the resource, it releases the

resource; as a result, the assignment edge is deleted.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30

Resource-Allocation Graph (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31

Resource-Allocation Graph: Example

• P = {P1, P2, P3}

• R = {R1, R2, R3, R4}

• E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32

Deadlock Detection using RAG

• If the graph contains no cycles, then no process in the system is deadlocked.

• If the graph does contain a cycle, then a deadlock may exist.

• If each resource type has exactly one instance, then a cycle implies that a deadlock has

occurred.

• If the cycle involves only a set of resource types, each of which has only a single

instance, then a deadlock has occurred.

• Each process involved in the cycle is deadlocked.

• In this case, a cycle in the graph is both a necessary and a sufficient condition for the

existence of deadlock.

• If each resource type has several instances, then a cycle does not necessarily imply that

a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a

sufficient condition for the existence of deadlock.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33

Deadlock Detection using RAG: Example

• Cycle 1: P1 → R1 → P2 → R3 → P3 → R2 → P1

• Cycle 2: P2 → R3 → P3 → R2 → P2

• Processes P1, P2, and P3 are deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34

Deadlock Detection using RAG: Example

• Cycle 1: P1 → R1 → P3 → R2 → P1

• There is no deadlock.

• The process P4 may release its

instance of resource type R2. That

resource can then be allocated to P3,

breaking the cycle.

In summary, if a resource-allocation graph

does not have a cycle, then the system is not

in a deadlocked state. If there is a cycle,

then the system may or may not be

in a deadlocked state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39

Deadlock Detection using RAG: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40

Deadlock Detection for Several Instance of Resource

• Let, an Allocation Matrix, a Request Matrix Q, and an Available Vector

• The algorithm proceeds by marking processes that are not deadlocked.

Initially, all processes are unmarked. Then the following steps are performed:

• A deadlock exists if and only if there are unmarked processes at the end of the

algorithm. Each unmarked process is deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41

Deadlock Detection - Example

• Mark P4, because P4 has no allocated resources.

• Set W = (0 0 0 0 1).

• The request of process P3 is less than or equal to W, so mark P3 and set W = W + (0 0 0 1 0) = (0

0 0 1 1).

• No other unmarked process has a row in Q that is less than or equal to W. Therefore, terminate

the algorithm.

• The algorithm concludes with P1 and P2 unmarked, indicating that these processes are

deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42

Deadlock Recovery

• To recover deadlock, the operating system examines either resources

or processes.

• For Process:

 Kill a Process: In this approach, kill the process due to which deadlock

occurred. But the selection of the process to kill is a tough task. In this, the

operating system mainly kills that process, which does not work more till

now.

 Kill all Process: Kill all the processes is not a suitable approach. We can use

this approach when the problem becomes critical. By killing all the

processes, the system efficiency will be decreased, and we have to execute

all the processes further from the start.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43

Deadlock Recovery (contd…)

• For Resources:

 Preempt the Resource: In this, we take the resource from one process to

the process that needs it to finish its execution, and after the execution is

completed, the process soon releases the resource. In this, the resource

selection is difficult, and the snatching of the resource is also difficult.

 Rollback to a Safe State: To enter into the deadlock, the system goes

through several states. In this, the operating system can easily roll back the

system to the earlier safe state. To do so, we require to implement

checkpoints at every state. At the time when we detect deadlock, then we

need to rollback every allocation so that we can enter into the earlier safe

state.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44

Background: Clock Cycle

• CPU speed is determined by the clock cycle.

• The clock cycle is the amount of time between two pulses of an oscillator.

• The clock speed is measured in Hz, often either megahertz (MHz) or gigahertz

(GHz).

o For example, a 4 GHz processor performs 4,000,000,000 clock cycles per second.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45

Background: CPU Cycle

• CPU cycle is also called machine cycle.

• CPU cycle refers to the time required for the execution of one simple

processor operation such as an addition.

o For an instruction cycle, we fetch an instruction and execute it, at least two CPU

cycles are required. At least one CPU cycle is required to fetch instructions, and at

least one CPU cycle is required to execute them. Complex instructions require

more CPU cycles.

• An instruction cycle may include multiple CPU cycles, and a CPU cycle

may include multiple clock cycles.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46

Background: Instruction Cycle

• Instruction cycle refers to the time taken to execute an instruction. It is the

basic operational process of a computer. This process is repeated continuously

by CPU from boot up to shut down of computer.

• The execution process of instructions is divided into the following steps:

o Fetch - The instruction is fetched from memory address that is stored in PC (Program

Counter) and stored in the Instruction Register IR.

o Decode - According to the instructions in the instruction register, decode what kind of

operation is to be parsed.

o Execute - Run the corresponding instructions to perform arithmetic and logic

operations, data transmission, etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47

Instruction Cycle, Machine Cycle and Clock Cycle

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48

Background: Memory

• Main memory and the registers built into the processor itself are the only storage that

the CPU can access directly.

• There are machine instructions that take memory addresses as arguments, but none

take disk addresses.

• Therefore, any instructions in execution, and any data being used by the instructions,

must be in one of these direct-access storage devices.

• If the data are not in memory, they must be moved there before the CPU can operate

on them.

• Registers that are built into the CPU are generally accessible within one clock cycle.

• Most CPUs can decode instructions and perform simple operations on register

contents at the rate of one or more operations per clock tick.

 The same cannot be said of main memory, which is accessed via a transaction on the

memory bus.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49

Background: Memory (contd…)

• Completing a memory access may take many clock cycles.

• In such cases, the processor normally needs to stall, since it does not

have the data required to complete the instruction that it is executing.

• This situation is intolerable because of the frequency of memory

accesses.

• The remedy is to add fast memory between the CPU and main memory.

• A memory buffer used to accommodate a speed differential, is called

cache.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50

Basic Hardware

• There are several hardware-level approaches to protect the operating system

from access by user processes and, in addition, to protect user processes from

one another.

• To make sure that each process has a separate memory space, the protection

is provided by using two registers: Base Register and Limit Register.

 For example, if the base register holds 300040 and the limit register is 120900, then the

program can legally access all addresses from 300040 through 420939 (inclusive).

 Protection of memory space is accomplished by having the CPU hardware compare every

address generated in user mode with the registers.

 Any attempt by a program executing in user mode, to access operating-system memory or

other users’ memory, results in a trap to the operating system, which treats the attempt as

a fatal error (an error that causes a program to terminate without any warning or saving its state).

o This scheme prevents a user program from (accidentally or deliberately) modifying the code or data structures of

either the operating system or other users.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51

Hardware Address Protection

• The base and limit registers can be loaded only by the operating system, which

uses a special privileged instruction.

Base and Limit Register defining a
logical address space

Hardware address protection with
Base and Limit Registers

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.52

Basic Concepts

• Address Binding

 Compile Time Binding

 Load Time Binding

 Execution Time Binding

• Logical Address and Physical Address

• Linking

 Static Linking

 Dynamic Linking

• Loading

 Static Loading

 Dynamic Loading

• Swapping

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.53

Address Binding

• The process (program) may be moved between disk and memory during its

execution.

• The processes on the disk that are waiting to be brought into memory for

execution form the input queue.

• The normal procedure is to select one of the processes in the input queue and

to load that process into memory.

• In most cases, a user program go through several steps (such as compiling,

loading, execution) before being executed.

 Addresses may be represented in different ways during these steps.

 Addresses in the source program are generally symbolic (such as count).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.54

Address Binding (contd…)

• The binding of instructions and data to memory addresses can be done

at any step along the way:

 Compile Time

 Load Time

 Execution (Run) Time

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.55

Address Binding (contd…)

• Compile Time

 If it is known at compile time where the process will reside in memory,

then absolute code (physical address is embedded) can be generated.

o For example, if it is known that a user process will reside starting at location R,

then the generated compiler code will start at that location and extend up

from there.

o If, at some later time, the starting location changes, then it will be necessary to

recompile this code.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.56

Address Binding (contd…)

• Load Time

 If it is not known at compile time where the process will reside in memory,

then relocatable code can be generated.

o In this case, final binding is delayed until load time.

o If the starting address changes, we need only reload the user code to

incorporate this changed value.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.57

Address Binding (contd…)

• Execution Time

 If the process can be moved during its execution from one memory

segment to another, then binding must be delayed until run time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.58

Summary of Address Bindings

• Compile Time Binding: It is the translation of logical addresses to physical addresses at the time

of compilation. Now this type of binding is only possible in systems where we know the

contents of the main memory in advance and know what address in the main memory we have

to start the allocation from. Knowing both of these things is not possible in modern multi-

processing systems. So it can be safely said the compile time binding would be possible in

systems not having support for multi-processing.

• Load Time Binding: It is the translation of the logical addresses to physical addresses at the time

of loading. The relocating loader contains the base address in the main memory from where the

allocation would begin. So when the time for loading a process into the main memory comes, all

logical addresses are added to the base address by the relocating loader to generate the

physical addresses.

• Run Time Binding: In most modern processors multi-processing is supported. Therefore, there

comes the need of shifting the physical addresses from one location to another during run time.

This is taken care by the run time binding concept. It is used in Compaction to remove External

Fragmentation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.59

Logical versus Physical Address Space

• An address generated by the CPU is commonly referred to as a logical address.

 The logical address is virtual address as it does not exist physically, therefore, it is

also known as virtual address.

 This address is used as a reference to access the physical memory location by CPU.

• An address seen by the memory unit (that is, the one loaded into the memory-

address register of the memory) is referred to as a physical address.

 Physical address identifies a physical location of required data in a memory.

• The compile-time and load-time address-binding methods generate identical

logical and physical addresses.

• The execution-time address-binding scheme results in differing logical and

physical addresses.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.60

Logical and Physical Address Space

• The set of all logical addresses generated for a program’s perspective is

a logical address space.

• The set of all physical addresses corresponding to these logical

addresses is a physical address space.

• The run-time mapping from virtual to physical addresses is done by a

hardware device called the Memory-Management Unit (MMU).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.61

Mapping from Virtual to Physical Addresses

Example: Simple MMU scheme (a generalization of the base-register scheme)

 CPU generates logical address 346.

 MMU generates relocation register (base register) 14000.

 In memory, the physical address is 14346 (346+14000).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.62

Linking

• Linking intends to generate an executable module of a program by combining

the object codes generated by the compiler or assembler.

• Linking is the process of connecting all the modules or the function of a

program for program execution.

• The linker, also known as the link editor, takes object modules from the

assembler and forms an executable file for the loader.

• Linking is classified into two types, based on the time when it is done:

 Static Linking

 Dynamic Linking

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.63

Linking (contd…)

• In the static linking, each program

binds to its dependent libraries at

compile time.

 With static linking, the user ends up

copying functions or routines that are

repetitive across various executables.

 For example: Nearly every program

needs printf() function. Thus, a copy of it

is present in all executables which wastes

space.

• In the case of dynamic linking,

programs use shared libraries, and

these libraries are linked to the

programs at run time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.64

Dynamic Linking

• In the dynamic linking approach, the linker does not copy the routines into the

executables. It takes note that the program has a dependency on the library.

• With dynamic linking, a stub is included in the image for each library routine

reference.

 The stub is a small piece of code that indicates how to locate the appropriate memory-

resident library routine or how to load the library if the routine is not already present.

 When the stub is executed, it checks to see whether the needed routine is already in

memory. If it is not, the program loads the routine into memory.

 Under this scheme, all processes that use a language library execute only one copy of

the library code.

 This feature can be extended to library updates (such as bug fixes). A library may be

replaced by a new version, and all programs that reference the library will

automatically use the new version.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.65

Loading

• Loading is the process of loading the program from secondary memory to the

main memory for execution.

• It is necessary for the entire program and all data of a process to be in physical

memory for the process to execute.

• The size of a process has thus been limited to the size of physical memory.

• To obtain better memory-space utilization, we can use dynamic loading.

 Dynamic loading is the technique through which a computer program, at runtime, load

a library into memory, retrieve the variable and function addresses, executes the

functions, and unloads the program from memory.

 It is often used to implement software plugins.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.66

Dynamic Loading

• With dynamic loading, a routine is not loaded until it is called.

• All routines are kept on disk in a relocatable load format.

• The main program is loaded into memory and is executed.

• When a routine needs to call another routine, the calling routine first checks to

see whether the other routine has been loaded.

• If it has not, the relocatable linking loader is called to load the desired routine

into memory and to update the program’s address tables to reflect this

change. Then control is passed to the newly loaded routine.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.67

Dynamic Loading (contd…)

• Advantage of Dynamic Loading:

 An unused routine is never loaded.

 This method is particularly useful when large amounts of code are needed to handle

infrequently occurring cases, such as error routines.

 In this case, although the total program size may be large, the portion that is used (and

hence loaded) may be much smaller.

• Dynamic loading does not require special support from the operating system.

• It is the responsibility of the users to design their programs to take advantage of

such a method.

• Operating systems may help the programmer, however, by providing library

routines to implement dynamic loading. Loading Examples of Java:

Class.forName (String className); //Dynamic Loading TestClass tc = new TestClass(); //Static Loading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.68

Swapping

• A process must be in memory to be

executed.

• A process can be swapped temporarily

out of memory to a backing store and

then brought back into memory for

continued execution.

• Example: Assume a multiprogramming

environment with a round-robin CPU-

scheduling algorithm. When a

quantum expires, the memory

manager will start to swap out the

process that just finished and to swap

another process into the memory

space that has been freed.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.69

Swapping (contd…)

• A variant of swapping policy is used for priority-based scheduling algorithms.

• If a higher-priority process arrives and wants service, the memory manager

can swap out the lower-priority process and then load and execute the higher-

priority process.

• When the higher-priority process finishes, the lower-priority process can be

swapped back in and continued.

• This variant of swapping is sometimes called roll out, roll in.

• Normally, a process that is swapped out will be swapped back into the same

memory space it occupied previously.

• This restriction is dictated by the method of address binding. If binding is done at assembly or

load time, then the process cannot be easily moved to a different location. If execution-time

binding is being used, then a process can be swapped into a different memory space, because

the physical addresses are computed during execution time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.70

Swapping (contd…)

• Swapping requires a backing store (a fast disk, large enough to accommodate

copies of all memory images, and it must provide direct access to these

memory images).

• System maintains a ready queue consisting of all processes whose memory

images are on the backing store or in memory and are ready to run.

• Whenever the CPU scheduler decides to execute a process, it calls the

dispatcher.

• The dispatcher checks to see whether the next process in the queue is in

memory.

• If it is not, and if there is no free memory region, the dispatcher swaps out a

process currently in memory and swaps in the desired.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.71

Memory Management Techniques

• There are two techniques for memory management:

 Contiguous Memory Allocation

 Non-Contiguous Memory Allocation

• In Contiguous Memory Allocation, the process must be loaded entirely

in main-memory at contiguous locations.

• In Non-Contiguous Memory Allocation, the process is loaded in several

memory blocks at different memory locations in the memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.72

Contiguous Memory Allocation

• A single contiguous section/part of memory is allocated to a process or

file needing it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.73

Non-Contiguous Memory Allocation

• The process is loaded in several memory blocks at different memory

locations in the memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.74

Contiguous Memory Allocation

• In contiguous memory allocation, each process is contained in a single

contiguous block of memory.

• Discuss -

 Memory Mapping and Protection

 Partitioning

 Allocation Policies

 Performance Parameters

o Fragmentation

o Maximum Process Size

o Degree of Multiprogramming

o Allocation Policy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.75

Memory Mapping and Protection

 • These features can be provided by using a relocation register together with a

limit register.

 The relocation register contains the value of the smallest physical address; the limit

register contains the range of logical addresses (for example, relocation = 100040 and limit

= 74600).

 When the CPU scheduler selects a process for execution, the dispatcher loads the

relocation and limit registers with the correct values as part of the context switch.

 Every address generated by a CPU is checked against these registers, we can protect both

the operating system and other users’ programs and data from being modified by this

running process.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.76

Memory Allocation

 • Dividing memory into several partitions is one of the simplest methods

for allocating memory.

 Each partition may contain exactly one process.

 When a partition is free, a process is selected from the input queue and is

loaded into the free partition.

 When the process terminates, the partition becomes available for another

process.

• Partitioning can be done in two ways:

 Fixed (Static) Partitioning

 Variable (Dynamic) Partitioning

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.77

Memory Allocation Policies

• The memory blocks available comprise a set of holes of various sizes

scattered throughout memory. When a process arrives and needs memory,

the system can search an appropriate hole with following policies:

 First-Fit - Allocate the first hole that is big enough. Searching can start either at

the beginning of the set of holes or at the location where the previous first-fit

search ended.

 Best-Fit - Allocate the smallest hole that is big enough. We must search the

entire list, unless the list is ordered by size. This strategy produces the smallest

leftover hole.

 Worst-Fit - Allocate the largest hole. Again, we must search the entire list,

unless it is sorted by size. This strategy produces the largest leftover hole.

 Next-Fit - It is similar to the first fit but it will search for the first sufficient

partition from the last allocation point.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.78

Memory Allocation Policies: First Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.79

Memory Allocation Policies: Best-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.80

Memory Allocation Policies: Worst-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.81

Fragmentation

• Internal Fragmentation

 Memory block allocated is slightly larger than request memory, therefore,

some portion of memory is left unused, as it cannot be used by another

process.

 The internal fragmentation can be reduced by effectively assigning the

smallest partition but large enough for the process.

• External Fragmentation

 Total memory space exists to satisfy a request, but it is not contiguous.

 The external fragmentation may be reduced by compaction (also known as

defragmentation) – shuffle memory contents to place all free memory

together in one large block.

 Compaction is possible only if relocation is dynamic, and is done at execution

time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.82

Fragmentation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.83 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.83

Compaction

• If processes are relocatable, the used memory blocked may be moved

together to make a larger free memory block.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.84 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.84

Fixed Partitioning

 • In this partitioning, number of partitions in

memory are fixed but size of each partition

may or may not be same.

• As it is contiguous allocation, hence no

spanning is allowed.

• Here, partition are made before execution

or during system configure.

• Sum of internal fragmentation in every block

= (4-1)+(8-7)+(8-7)+(16-14) = 3 + 1 + 1 + 2 =

7MB.

• Suppose a process P5 of size 7MB comes. But, this

process cannot be accommodated inspite of available

free space because of contiguous allocation. Hence,

7MB becomes part of External Fragmentation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.85 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.85

Advantages/Disadvantages of Fixed Partitioning

• Advantages

 Easy to implement

 Little OS overhead

• Disadvantages

 Internal fragmentation

 External fragmentation

 Limit process size - Process of size greater than size of partition in Main Memory

cannot be accommodated.

 Limitation on degree of multiprogramming

• Best Allocation Policy

 Best-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.86 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.86

Variable Partitioning

• This partitioning tries to overcome the problems caused by fixed partitioning.

• In this technique, the partition size is not declared initially.

• It is declared at the time of process loading.

• The partition size varies according to the need of the process so that the

internal fragmentation can be avoided.

• The size of each partition will be equal to the size of the process.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.87 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.87

Advantages/Disadvantages of Variable Partitioning

• Advantages

 No internal fragmentation

 No limitation on the size of the process

 Degree of multiprogramming is dynamic

• Disadvantages

 External fragmentation

• Best Allocation Policy

 Worst-Fit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.88 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.88

Advantages/Disadvantages of Variable Partitioning

• External Fragmentation

 Suppose, Process P1 (2MB) and process P3

(1MB) completed their execution. Hence

two spaces are left, i.e. 2MB and 1MB.

 Let’s suppose process P5 of size 3MB comes.

The empty space in memory cannot be

allocated as no spanning is allowed in

contiguous allocation.

 The rule says that process must be

contiguously present in main memory to get

executed.

 Hence, variable partitioning may result in

external fragmentation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.89 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.89

Example - 1

Consider the following heap in which blank regions are not in use and

shaded regions are in use.

The sequence of requests for blocks of size 300, 25, 125, 50 can be

satisfied if we use:

a) either First-fit or Best-fit policy.

b) First-fit but not Best-fit

c) Best-fit but not First-fit

d) None of these

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.90 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.90

Example - 2

Consider a system in which the memory consists of the following free

holes:

Sizes in Memory Order: 15K, 5K, 20K, 4K and 7K

Which hole is taken for successive segment request of 12K, 7K and 15K for

Next-Fit. Assuming that the last process was swapped in just before the

5K hole.

a) 15K, 20K, Out of Memory

b) 15K, 7K, 20K

c) 20K, 7K, 15K

d) 15K, 7K, 20K

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.91 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.91

Paging

• Paging is a memory-management scheme that permits the physical

address space of a process to be non-contiguous.

• Paging avoids external fragmentation and the need for compaction.

• Paging in its various forms is used in most operating systems.

• Implementation of paging involves dividing the process into blocks of the

same size called pages which are mapped to same size blocks on physical

memory called frames.

 Physical Memory Blocks --> Frames

 Logical Memory Blocks --> Pages

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.92 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.92

Paging (contd…)

• In every non-contiguous memory management technique, we need to

consider the following points:

 Organization of Logical Address Space (LAS)

 Organization of Physical Address Space (PAS)

 Organization of Memory Management Unit (MMU)

 Translation Algorithm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.93 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.93

Paging (contd…)

• Address generated by CPU is divided into:

 Page number (p): Number of bits required to represent the pages in Logical

Address Space.

 Page offset (d): Number of bits required to represent particular word in a

page or word number of a page.

• Physical Address is divided into:

 Frame number (f): Number of bits required to represent the frame of

Physical Address Space.

 Frame offset (d): Number of bits required to represent particular word in a

frame or word number of a frame.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.94 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.94

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.95 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.95

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.96 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.96

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.97 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.97

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.98 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.98

Paging (contd…)

Let, LAS = 8 KB, PAS = 4 KB, PS (Page Size) = 1KB, 1Word = 1 Byte

Note: LAS = 2LA and PAS = 2PA, LAS & PAS is in words and LA & PA is in bits.

Organization of Memory Management Unit (MMU)

• In paging, it is Page Table.

• Number of entries in Page Table is equal to number of pages in LAS.

• Page table contains frame number and other bits (valid/invalid bit, protection

bit, modified bit, etc.)

• Each process has its page table.

• Page table also resides in main memory.

• Page Table Size = N * e (entry size)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.99 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.99

Paging (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.100 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.100

Paging: Example - 1

• Consider a system supporting,

 LA = 32 Bits,

 PA = 27 Bits,

 PS = 4KB,

 Page Table Entry Size (e) = 3 Byte

• What is Page Table Size?

 Page Table Size = 𝑁 × 𝑒

 𝑁 =
𝐿𝐴𝑆

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

2𝐿𝐴

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

232

212

 Page Table Size =
232

212 × 3 = 220 × 3 = 1024 × 1024 × 3 Bytes

 = 31,45,728 Bytes  3 MB

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.101 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.101

Paging: Example - 2

• Consider a system with 2K Pages, 512 Frames, Page Offset = 9 Bits, and e

= 4 Bytes. Determine p, f, LAS, PAS and Page Table Size.

 Given, Number of Pages N = 2K = 2048 = 211

 Number of Frames M = 512

 Page Offset d = 9 Bits

 Each Entry Size of Page Table e = 4 Bytes

 𝑝 = 𝑙𝑜𝑔2𝑁 = 𝑙𝑜𝑔22048 = 11

 𝑓 = 𝑙𝑜𝑔2𝑀 = 𝑙𝑜𝑔2512 = 9

 𝐿𝐴𝑆 = 2𝐿𝐴 = 2(𝑝:𝑑) = 2(11:9) = 220

 𝑃𝐴𝑆 = 2𝑃𝐴 = 2(𝑓:𝑑) = 2(9:9) = 218

 𝑃𝑎𝑔𝑒 𝑇𝑎𝑏𝑙𝑒 𝑆𝑖𝑧𝑒 = 𝑁 × 𝑒 = 211 × 4 = 2048 × 4 Bytes = 8192 Bytes = 8KB

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.102 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.102

Paging: Example - 3

• Consider a system with 35 Bits LA, 32 Bits PA, 4KB Page Size, and each Table Entry

contains 2 Protection Bits, 1 Valid/Invalid Bit, and 1 Modified Bit along with Frame

Number. What is Page Table Size?

No. of Pages (N) =
𝐿𝐴𝑆

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

2𝐿𝐴

𝑃𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 =

235

212 =223

No. of Frames (M) =
𝑃𝐴𝑆

𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒
 =

2𝑃𝐴

𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒
 =

232

212 =220

No. of Bits required to Represent Frame No. (f) = 𝑙𝑜𝑔2𝑀 = 𝑙𝑜𝑔2220 = 20

Size of Each Entry in Table = 20 + 2 + 1 + 1 = 24 Bits

Page Table Size = 𝑁 × 𝑒 = 223 × 3 Bytes = 83,88,608 × 3 Bytes = 24 MB

Bits to Represent Frame No. (f) Protection Bits Valid/Invalid Bit Modified Bit

Size of Each Entry in Table

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.103 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.103

Hardware Implementation for Page Table

• Approach - 1

 The page table can be implemented as a set of dedicated registers.

 These registers should be built with very high-speed logic to make the

paging-address translation efficient. Every access to memory must go

through the paging map, so efficiency is a major consideration.

 The use of registers for the page table is satisfactory if the page table is

reasonably small (for example, 256 entries).

 Most contemporary computers, however, allow the page table to be very

large (for example, 1 million entries).

 For these machines, the use of fast registers to implement the page table

is not feasible.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.104 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.104

Hardware Implementation for Page Table

• Approach - 2

 The page table is kept in main memory, and a page-table base register

(PTBR) points to the page table.

 The problem with this approach is the time required to access a memory

location.

 If we want to access location i, we must first index into the page table,

using the value in the PTBR offset by the page number for i.

 It provides us with the frame number; we can then access the desired

place in memory.

 In this approach, two memory accesses are needed to access a byte (one

for the page-table entry, one for the byte). Thus, memory access is slowed

by a factor of 2.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.105 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.105

Hardware Implementation for Page Table

• Approach – 3 (Standard Approach)

 Use of a special, small, fast lookup hardware cache, called a translation

look-aside buffer (TLB).

 The TLB is associative, high-speed memory.

 TLB consists of two columns: Page Number (Key) and Frame Number

(Value).

 The item is compared with all keys simultaneously.

o If the item is found, the corresponding value field is returned.

o The search is fast; the hardware is expensive.

o Typically, the number of entries in a TLB is small, often numbering between 64 and

1,024.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.106 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.106

Using TLB with Page Table

• The TLB contains only a few of the page-table entries.

• When a logical address is generated by the CPU, its page number is presented

to the TLB.

 If the page number is found, its frame number is immediately available and is

used to access memory.

 If the page number is not in the TLB (known as a TLB miss), a memory reference

to the page table must be made. In addition, we add the page number and frame

number to the TLB, so that they will be found quickly on the next reference.

 If the TLB is already full of entries, the operating system must select one for

replacement. Replacement policies range from least recently used (LRU) to

random. Furthermore, some TLBs allow certain entries to be wired down,

meaning that they cannot be removed from the TLB. Typically, TLB entries for

kernel code are wired down.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.107 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.107

Using TLB with Page Table

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.108 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.108

CPU Cache and TLB

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.109 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.109

Effective Access Time

• The percentage of times that a particular page number is found in the

TLB is called the hit ratio.

• For example, an 80-percent hit ratio means that we find the desired

page number in the TLB, 80 percent of the time.

 If it takes 20 nanoseconds to search the TLB and 100 nanoseconds to

access memory, then a mapped-memory access takes 120 nanoseconds

when the page number is in the TLB.

 If we fail to find the page number in the TLB (20 nanoseconds), then we

must first access memory for the page table and frame number (100

nanoseconds) and then access the desired byte in memory (100

nanoseconds), for a total of 220 nanoseconds.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.110 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.110

Effective Access Time - Example

Effective Access Time =

Hit Ratio * (Access Time of TLB + Access Time of Memory)

+

 Miss Ratio * (Access Time of TLB + Access Time for Page Table + Access Time of Memory)

Question 1: A paging scheme uses a Translation Look-a-side buffer (TLB). A TLB access

takes 10 ns and a main memory access takes 50 ns. What is the effective access time (in

ns) if the TLB hit ratio is 90% and there is no page fault?

Answer: 54, 60, 65, 75

Question 2: A paging scheme uses a Translation Look-a-side buffer (TLB). The effective

memory access takes 160 ns and a main memory access takes 100 ns. What is the TLB

access time (in ns) if the TLB hit ratio is 60% and there is no page fault?

Answer: 54, 60, 20, 75

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.111 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.111

Protection in Paging: Protection Bit

• Memory protection in a paged environment is accomplished by

protection bit associated with each frame.

• One bit can define a page to be read–write or read-only.

 At the same time that the physical address is being computed, the protection bits

can be checked to verify that no writes are being made to a read-only page.

 An attempt to write to a read-only page causes a hardware trap to the operating

system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.112 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.112

Protection in Paging: Valid–Invalid Bit

• One additional bit is generally attached to each entry in the page table:

a valid–invalid bit.

 When this bit is set to “valid,” the associated page is in the process’s logical

address space and is thus a legal (or valid) page.

 When the bit is set to “invalid,” the page is not in the process’s logical address

space.

 The OS sets this bit for each page to allow or disallow access to the page.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.113 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.113

Protection in Paging: Valid–Invalid Bit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.114 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.114

Structure of Page Table

• Hierarchical (Multi-Level) Paging

• Hashed Page Tables

• Inverted Page Tables

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.115 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.115

Hierarchical (Multi-Level) Paging

• Consider a system with a 32-bit logical address space.

 If the page size in such a system is 4 KB (212), then a page table may consist of up

to 1 million entries 232/212).

 Assuming that each entry consists of 4 bytes, each process may need up to 4MB

of physical address space for the page table alone.

 If we would not want to allocate the page table contiguously in main memory,

the solution is to divide the page table into smaller pieces.

o One way is to use a two-level paging algorithm, in which the page table itself is also paged.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.116 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.116

Hierarchical (Multi-Level) Paging

A two-level page-table scheme

 Consider a system with a 32-bit logical

address space and 4KB page size:

 A logical address is divided into a

page number consisting of 20 bits

and a page offset consisting of 12

bits. Because we page the page

table, the page number is further

divided into a 10-bit page number

and a 10-bit page offset.

 Thus, a logical address is as follows:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.117 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.117

Two-Level 32-Bit Paging Architecture

Address Translation Process

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.118 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.118

Hierarchical (Multi-Level) Paging

For a system with a 64-bit logical address space, is a two-level paging
scheme appropriate?

• To illustrate this point, let us

suppose that the page size in such a

system is 4 KB (212).

• In this case, the page table consists

of up to 252 entries.

• If we use a two-level paging

scheme, then the inner page tables

can conveniently be one page long,

or contain 210 4-byte entries.

The outer page table is still 234 bytes in size.

The next step would be a four-level paging
scheme,

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.119 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.119

Hashed Page Tables

 A common approach for handling address spaces larger than 32 bits is to use a hashed

page table, with the hash value being the virtual page number.

 Each entry in the hash table contains a linked list of elements that hash to the same

location (to handle collisions).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.120 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.120

Inverted Page Table

 An inverted page table has one entry for each real page (or frame) of memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.121 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.121

Shared Pages

• An advantage of paging is the possibility of sharing common code, particularly

in a time-sharing environment.

• Consider a system that supports 40 users, each of whom executes a text

editor. If the text editor consists of 150 KB of code and 50 KB of data space,

we need 8,000 KB to support the 40 users.

• In shared mode, only one copy of the editor need be kept in physical memory.

• Each user’s page table maps onto the same physical copy of the editor, but

data pages are mapped onto different frames.

• Thus, to support 40 users, we need only one copy of the editor (150 KB), plus

40 copies of the 50 KB of data space per user. The total space required is now

2,150 KB instead of 8,000 KB—a significant savings.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.122 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.122

Shared Pages (contd…)

Sharing of Code in a Paging Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.123 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.123

Limitations of Paging

• Internal Fragmentation

 If the memory requirements of a process do not happen to coincide with page boundaries,

the last frame allocated may not be completely full.

 Example: If page size is 2048 bytes, a process of 72,766 bytes will need 35 pages plus 1,086

bytes. It will be allocated 36 frames, resulting in internal fragmentation of 2,048 − 1,086 =

962 bytes.

 If process size is independent of page size, we expect internal fragmentation to average

one-half page per process.

 This consideration suggests that small page sizes are desirable. However, overhead is

involved in each page-table entry, and this overhead is reduced as the size of the pages

increases. Also, disk I/O is more efficient when the amount of data being transferred is

larger.

• Larger Access Time

• Memory Required for Page Table

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.124 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.124

Segmentation

• In Paging, the user’s view of memory

is not the same as the actual physical

memory.

• Users do not think of memory as a

linear array of bytes, some containing

instructions and others containing

data.

• Rather, users prefer to view memory

as a collection of variable-sized

segments (methods, stack, etc.), with

no necessary ordering among

segments.
User’s View of a Program

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.125 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.125

Segmentation (contd…)

• Segmentation is a memory-management scheme that supports user’s

view of memory.

• A logical address space is a collection of segments.

• Each segment has a name and a length.

• The addresses specify both the segment number and the offset within

the segment.

 Elements within a segment are identified by their offset from the

beginning of the segment: the first statement of the program, the seventh

stack frame entry in the stack, the fifth instruction of the Sqrt(), and so on.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.126 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.126

Segmentation (contd…)

• While compiling, the compiler automatically constructs segments

reflecting the input program.

• A ‘C’ compiler might create separate segments for the following:

 The code

 Global variables

 The heap, from which memory is allocated

 The stacks used by each thread

 The standard C library

 Libraries that are linked in during compile time

• The loader takes all these segments and assign them segment numbers.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.127 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.127

Segmentation (contd…)

• Each entry in the segment table has a segment base and a segment

limit.

 The segment base contains the starting physical address where the

segment resides in memory.

 The segment limit specifies the length of the segment.

• A logical address consists of two parts:

 A segment number (s), and

 An offset into that segment (d)

• The segment number is used as an index to the segment table.

• The offset d of the logical address must be between 0 and the segment

limit. If it is not, we trap to the operating system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.128 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.128

Segmentation (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.129 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.129

Segmentation (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.130 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.130

Limitations of Segmentation

• External Fragmentation

 To deal with external fragmentation, the Segmentation can be combined

with Paging, also known as Segmented Paging.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.131 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.131

Virtual Memory

• Virtual memory is a technique that allows the execution of processes

that are not completely in memory.

• One major advantage of this scheme is that programs can be larger

than physical memory.

• Virtual memory gives an illusion to the user/programmer that huge

amount memory is available for executing its process.

• Virtual memory can be implemented through demand paging.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.132 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.132

Demand Paging

• Demand Paging

 Pure Demand Paging - Never bring a page into memory until it is required

 Pre-fetched Demand Paging

• A demand-paging system is similar to a paging system with swapping.

• Types of Pages

 Modified Page or Dirty Page

 Clean Page

• Page Fault Service Time

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.133 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.133

Hardware Support for Demand Paging

• Page Table

• Secondary Memory

 This memory holds those pages that are not present in main memory.

 The secondary memory is usually a high-speed disk.

 It is known as the swap device, and the section of disk used for this

purpose is known as swap space.

Note: To implement demand paging, we must develop a frame-allocation

algorithm and a page-replacement algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.134 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.134

Page Table when some Pages are not in Main Memory

 To distinguish between the

pages that are in memory and

the pages that are on the disk,

we need some form of

hardware support.

 The valid–invalid bit scheme

can be used for this purpose.

 When this bit is set to “valid,”

the associated page is in

memory.

 If the bit is set to “invalid”, the

page is currently on the disk.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.135 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.135

Steps in Handling a Page Fault

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.136 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.136

Performance of Virtual Memory

• Let

 Main Memory Access Time (MMAT) = M

 Page Fault Rate (PFR) = P

 Page Fault Service Time (PFST) = S

 Effective Memory Access Time (EMAT) = P*S+(1-P)*M

• If MMAT = 200 microsecond, PFR = 25%, PFST = 1 millisecond, then what is

EMAT (in Microsecond)?

 EMAT = 0.25*1000 + 0.75*200 = 250 + 150 = 400 Microsecond

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.137 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.137

Performance of Virtual Memory

• If MMAT (M) = 1 microsecond, PFST (S) = 10 Millisecond, Hit Ratio = 99.99%,

the what is EMAT (in Microsecond)?

 If Hit Ratio = 99.99, then P = 0.01%

 Therefore, EMAT = 0.0001*10000 + (1-0.0001)*1 =

 = 1 + 0.9999 = 1.9999 Microsecond

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.138 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.138

Page Replacement

1) Find the location of the desired page on the disk.

2) Find a free frame:

a) If there is a free frame, use it.

b) If there is no free frame, use a page-replacement algorithm to select a victim

frame.

c) Write the victim frame to the disk (If dirty); change the page and frame tables

accordingly.

3) Bring the desired page into the (newly) freed frame; change the page and

frame tables.

4) Continue the process by restarting the instruction that caused the trap.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.139 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.139

Page Replacement (contd…)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.140 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.140

Page Replacement Algorithms

• First-Come, First-Out

• Optimal Page Replacement

• Least Recently Used

We can evaluate an algorithm by running it on a particular string of

memory references and computing the number of page faults.

• The string of memory references is called a reference string.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.141 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.141

Page Replacement Algorithm: First-Come, First-Out

• We can create a FIFO queue to hold all pages in memory. We replace the

page at the head of the queue. When a page is brought into memory, we

insert it at the tail of the queue.

Q. Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page frames. Find

number of page faults.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.142 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.142

Page Replacement Algorithm: First-Come, First-Out

Q. Consider page reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 with 3 page

frames. Find number of page faults.

Q. Consider page reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 with 4 page

frames. Find number of page faults.

Belady’s Anomaly – For some page-replacement algorithms, the page-

fault rate may increase as the number of allocated frames increases.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.143 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.143

Page Replacement Algorithm: Optimal Page Replacement

Replace the page that will not be used for the longest period of time.

 Use of this page-replacement algorithm guarantees the lowest possible page

fault rate for a fixed number of frames.

 Unfortunately, the optimal page-replacement algorithm is difficult to

implement, because it requires future knowledge of the reference string.

 The optimal algorithm is used mainly for comparison studies.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.144 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.144

Page Replacement Algorithm: Optimal Page Replacement

Q. Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page

frame. Find number of page fault using optimal page replacement algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.145 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.145

Page Replacement Algorithm: Least-Recently-Used (LRU)

Replace the page that has not been used for the longest period of time.

 LRU replacement associates with each page the time of that page’s last use.

 When a page must be replaced, LRU chooses the page that has not been used

for the longest period of time.

 This strategy can be considered as the optimal page-replacement algorithm

looking backward in time, rather than forward.

 The LRU policy is often used as a page-replacement algorithm and is

considered to be good.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.146 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.146

Page Replacement Algorithm: LRU Example

Q. Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 4 page

frames. Find number of page faults using least-recently-used algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.147 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.147

Allocation of Frames

• How do we allocate the fixed amount of free memory among the

various processes?

 The minimum number of frames per process is defined by the

architecture.

 The maximum number is defined by the amount of available

physical memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.148 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.148

Allocation of Frames: Equal Allocation

• The easiest way to split m frames among n processes is to give

everyone an equal share, m/n frames.

• For instance, if there are 93 frames and five processes, each process

will get 18 frames. The three leftover frames can be used as a free-

frame buffer pool.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.149 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.149

Allocation of Frames: Proportional Allocation

• Consider a system with a 1-KB frame size.

 If a small student process of 10 KB and an interactive database of 127 KB

are the only two processes running in a system with 62 free frames, it

does not make much sense to give each process 31 frames.

 The student process does not need more than 10 frames, so the other 21

are, strictly speaking, wasted.

• To solve this problem, we can use proportional allocation, in which we

allocate available memory to each process according to its size.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.150 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.150

Allocation of Frames: Global vs. Local Allocation

• With multiple processes competing for frames, we can classify page-

replacement algorithms into two broad categories:

 Global Replacement

o It allows a process to select a replacement frame from the set of all frames,

even if that frame is currently allocated to some other process; that is, one

process can take a frame from another.

o We may allow high-priority processes to select frames from low-priority

processes for replacement.

 Local Replacement

o It allows that that each process select from only its own set of allocated

frames.

o With a local replacement strategy, the number of frames allocated to a

process does not change.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.151 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.151

Thrashing

• If the process does not have the number of frames it needs to support

pages in active use, it will quickly page-fault.

• At this point, it must replace some page.

• However, since all its pages are in active use, it must replace a page that

will be needed again right away.

• Consequently, it quickly faults again, and again, and again, replacing pages

that it must bring back in immediately.

• This high paging activity is called thrashing.

• A process is thrashing if it is spending more time in paging than executing.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.152 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.152

Thrashing (contd…)

	1
	2

