
© Bharati Vidyapeeth’s Institute of Computer Applications and Management , New Delhi-63, by Parul arora
U1.
‹#›

DISCRETE STRUCTURES
UNIT II

© Bharati Vidyapeeth’s Institute of Computer Applications and Management , New Delhi-63, by Parul arora
U1.
‹#›

Poset and Lattices

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Poset
Suppose R is a relation on set S which satisfy the following
properties

(Reflexive) for any a  S we have aRa
(Antisymmetric) if aRb and bRa then a=b
(Transitive) if aRb and bRc then aRc.

Then this relation R is called partial order relation and the set S
is called partially ordered set or POSET. A partial order relation
is usually denoted by the symbol ≤
Means (S , ≤) is a partially ordered set.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Comparable elements

Two elements x, y in a partially ordered set (A, ≤) are said to be
comparable if either x ≤ y or y ≤ x

Uncomparable elements

Two elements x, y in a partially ordered set (A, ≤) are said to
be uncomparable if

x ≤ y or y ≤ x both do not hold

Ex in the poset (z+ , /) are the integers 3 and 9 comparable?
Are 5 and 7 comparable

Yes 3 and 9 are comparable but 5 and 7 and 7 and 5 are not

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

If (S , ≤) is a poset and every two element of a set are comparable
then S Is called totally ordered set or linearly ordered set.Totally
ordered set is also known as chain.

Ex the poset (Z , ≤) is a totally ordered set

Totally Ordered Set

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Hasse Diagram Of A Poset

If (S, ≤) is a poset then its hasse diagram is drawn as follows

The element of S are represented by dots

Since a partial order is reflexive , hence each vertex of A must be
related to itself , so the edges from a vertex to itself are deleted in
hasse diagram.

Since a partial order is transitive , hence whenever aRb and bRc
we have aRc. Eliminate all edges that are implied by the
transitive property .

If a vertex’a’ is connected to vertex ‘b’ by an edge i.e. aRb then
vertex b appears above vertex ‘a’ . Therefore arrows may be
ommitted from the edges in hasse diagram.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Q1 consider the set A= {k,l,m,n,p} and the corresponding relation
R = { (k , k) (l,l) (m, m) (n,n) (p,p) (k,m) (k,l) (k,n) (k,p)
(m,n) (m,p) (n,p) (l,p)}

construct the directeg graph and corresponding hasse diagram.

Q2 let D= {1,2,4,5,10,20,25,50,100} and let the relation is for
divisibility

Determine the GLB of B where B= {10,20}

Determine the LUB of B where B= {10,20}

Determine the GLB of B where B= {5,10,20,25}

Determine the LUB of B where B= {5,10,20,25}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Maximal And Minimul Element

An element of a Poset is called maximal if it is not less than any
element of the poset .

That is a is maximal in the poset (S , ≤) if there is no b  S such
that a<b

A poset may have more than one maximal element.

An element of a Poset is called minimal if it is not greater than
any element of the poset .

That is a is minimal in the poset (S , ≤) if there is no b  S such
that b< a

A poset may have more than one minimal element.

Maximum and minimum elements are easy to spot in hasse
diagram they are top and bottom element .

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Greatest And Least Element

An element in a poset that is greater then every other element is
called the greatest element .

Greatest element is unique when it exists

An element is called least element if it is less then all other
element in POSET

Least element is unique when it exists.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Upper And Lower Bound

An element that is greater then all the elements in a subset A of a
poset (S , ≤) .If u is an element of S such that a ≤ u for all
elements a A then u is called an upper bound of A .

An element that is less then all the elements in A if l is an element
of S such that l ≤ a for all elements a A then l is called lower
bound of A.

LEAST UPPER BOUND AND GREATEST LOWER BOUND

The element x is called the least upper bound (SUPREMUM) of
the subset A if x is an upper bound that is less the every other
upper bound of A it is also calledit will be unique element

The element y is called the greatest lower bound (INFIMUM)of
the subset A if y is a lower bound that is greater then every other
lower bound of A it will be unique element.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Isomorphic Ordered Set

If X and Y are partially ordered sets. A one to one function
f:X---Y is called an isomorphic mapping from X in to Y if
f preserves the ordered relation, means if the following two
conditions are hold for any pair a and a’ in X:

If a ≤ a’ then f(a)≤ f(a)’
If a || a’ (noncomparable) then f(a) || f(b)
And if A and B are linearly ordered, then only (a) is needed
for f to be an isomorphic mapping

WELL ORDERED SET
A set (S , ≤) is a well ordered set if it is a poset such that ≤
is a total ordering and such that every non empty subset of S
has a least element.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

LATTICES

A lattice is a partially ordered set (L, ≤) in which every pair of
element a, b  L has a greatest lower bound and a least upper
bound.

The greatest lower bound of a subset {a,b}  L will be
denoted by a * b and the least upper bound by a  b . GLB
{a,b}= a * b the meet or product of a and b, and the LUB {a,
b} = a  b the join or sum of a and b.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Properties Of Lattices

If two binary operations of meet and join on a lattice (L, ≤)
are denoted by * and  then for any a , b, c  L, we have

a * a = a a  a = a
(idempotent law)

a * b = b* a a  b = b  a
(commutative law)

(a * b) * c = a * (b*c) (a  b)  c = a  (b  c)
(associative law)

a * (a  b) = a a  (a * b) = a
(absorption law)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Bounded Lattice
In a bounded lattice (L, * ,  , 0 , 1) , an element b  L is
called a complement of an element a  L if

a * b = 0 and a  b = 1

Complemented Lattice
A lattice (L, *,  ,0 , 1) is said to be a complemented lattice if
evewry element of L has atleast one complement.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Boolean Algebra

Boolean Algebra named after
George Boole who used it to
study human logical
reasoning – calculus of
proposition.

Events : true or false

Connectives : a OR b; a AND b,
NOT a

Example: Either “it has rained”
OR “someone splashed
water”, “must be tall” AND
“good vision

a b a AND b
F F F
F T F
T F F
T T T

a b a OR b
F F F
F T T
T F T
T T T

a NOT a
F T
T F

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Two-valued Boolean Algebra

Set of elements: {0,1}

Set of operations: { ., + , ¬ }

x y x . y
0 0 0
0 1 0
1 0 0
1 1 1

x y x + y
0 0 0
0 1 1
1 0 1
1 1 1

x ¬x
0 1
1 0

Signals: High = 5V = 1; Low = 0V = 0

x

y
x.y

x

y
x+y x x'

Sometimes denoted by ’,
for example a’

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Boolean Algebra Postulates

The set B contains at least two distinct elements x and y.

Closure: For every x, y in B,
 x + y is in B
 x . y is in B

Commutative laws: For every x, y in B,
 x + y = y + x
 x . y = y . x

A Boolean algebra consists of a set of elements B, with two binary
operations {+} and {.} and a unary operation {'}, such that the
following axioms hold:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Associative laws: For every x, y, z in B,
 (x + y) + z = x + (y + z) = x + y + z
 (x . y) . z = x .(y . z) = x . y . z

Identities (0 and 1):
 0 + x = x + 0 = x for every x in B
 1 . x = x . 1 = x for every x in B

Distributive laws: For every x, y, z in B,
 x . (y + z) = (x . y) + (x . z)
 x + (y . z) = (x + y) . (x + z)

Complement: For every x in B, there exists an element x' in
B such that
 x + x' = 1
 x . x' = 0

.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Duality

Duality Principle – every valid Boolean expression
(equality) remains valid if the operators and identity
elements are interchanged, as follows:

+  .
1  0

Example: Given the expression
a + (b.c) = (a+b).(a+c)

then its dual expression is
a . (b+c) = (a.b) + (a.c)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Standard Forms

Certain types of Boolean expressions lead to gating networks
which are desirable from implementation viewpoint.

Two Standard Forms:

Sum-of-Products and Product-of-Sums

Literals: a variable on its own or in its complemented form.
Examples: x, x' , y, y'

Product Term: a single literal or a logical product (AND) of
several literals.

Examples: x, x.y.z', A'.B, A.B, e.g'.w.v

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Standard Forms

Sum Term: a single literal or a logical sum (OR) of several
literals.

Examples: x, x+y+z', A'+B, A+B, c+d+h'+j

Sum-of-Products (SOP) Expression: a product term or a logical
sum (OR) of several product terms.

Examples: x, x+y.z', x.y'+x'.y.z, A.B+A'.B',
A + B'.C + A.C' + C.D

Product-of-Sums (POS) Expression: a sum term or a logical
product (AND) of several sum terms.

Examples: x, x.(y+z'), (x+y').(x'+y+z),
(A+B).(A'+B'), (A+B+C).D'.(B'+D+E')

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Standard Forms

Every Boolean expression can either be expressed as sum-of-
products or product-of-sums expression.

Examples:

SOP: x.y + x.y + x.y.z

POS: (x + y).(x + y).(x + z)
both: x + y + z or x.y.z
neither: x.(w + y.z) or z + w.x.y + v.(x.z + w)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Minterm & Maxterm (1/3)
Consider two binary variables x, y.

Each variable may appear as itself or in complemented form as
literals (i.e. x, x' & y, y')

For two variables, there are four possible combinations with the
AND operator, namely:

x'.y', x'.y, x.y', x.y

These product terms are called the minterms.

A minterm of n variables is the product of n literals from the
different variables.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Minterm & Maxterm

In general, n variables can give 2n minterms.

In a similar fashion, a maxterm of n variables is the sum of n
literals from the different variables.

Examples: x'+y', x'+y, x+y',x+y

In general, n variables can give 2n maxterms.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Minterm & Maxterm
The minterms and maxterms of 2 variables are denoted by m0
to m3 and M0 to M3 respectively:

Minterms Maxterms
x y term notation term notation
0 0 x'.y' m0 x+y M0
0 1 x'.y m1 x+y' M1
1 0 x.y' m2 x'+y M2
1 1 x.y m3 x'+y' M3

Each minterm is the complement of the corresponding
maxterm:

Example: m2 = x.y'
m2' = (x.y')' = x' + (y')' = x'+y = M2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Sum of Minterms

What is a canonical/normal form?

 A unique form for representing something.

Minterms are product terms.

 Can express Boolean functions using Sum-of-Minterms
form.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Sum of Minterms

a) Obtain the truth table.

Example:

x y z F 1 F 2 F 3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Sum of Minterms

b) Obtain Sum-of-Minterms by gathering/summing the minterms
of the function (where result is a 1)
F1 = x.y.z' = m(6)

F2 = x'.y'.z + x.y'.z' + x.y'.z + x.y.z' + x.y.z
= m(1,4,5,6,7)

F3 = x'.y'.z + x'.y.z
+ x.y'.z' +x.y'.z

= m(1,3,4,5)

x y z F1 F2 F3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Product of Maxterms

Maxterms are sum terms.

For Boolean functions, the maxterms of a function are the terms
for which the result is 0.

Boolean functions can be expressed as Products-of-Maxterms.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Product of Maxterms

E.g.: F2 = M(0,2,3) = (x+y+z).(x+y'+z).(x+y'+z')

F3 = M(0,2,6,7)

= (x+y+z).(x+y'+z).(x'+y'+z).(x'+y'+z')

x y z F 1 F 2 F 3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Product of Maxterms

Why is this so? Take F2 as an example.

F2 = m(1,4,5,6,7)

The complement function of F2 is:

F2' = m(0,2,3)

= m0 + m2 + m3

(Complement functions’ minterms
are the opposite of their original
functions, i.e. when
original function = 0)

x y z F 2 F 2 '
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Canonical Form: Product of Maxterms

From previous slide, F2' = m0 + m2 + m3

Therefore:

F2 = (m0 + m2 + m3)'

= m0' . m2' . m3' DeMorgan

= M0 . M2 . M3 mx' = Mx

= M(0,2,3)

Every Boolean function can be expressed as either Sum-of-
Minterms or Product-of-Maxterms.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Conversion of Canonical Forms

Sum-of-Minterms  Product-of-Maxterms

 Rewrite minterm shorthand using maxterm shorthand.

 Replace minterm indices with indices not already used.

Eg: F1(A,B,C) = m(3,4,5,6,7) = M(0,1,2)

Product-of-Maxterms  Sum-of-Minterms

 Rewrite maxterm shorthand using minterm shorthand.

 Replace maxterm indices with indices not already used.

Eg: F2(A,B,C) = M(0,3,5,6) = m(1,2,4,7)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Conversion of Canonical Forms

Sum-of-Minterms of F  Sum-of-Minterms of F'

 In minterm shorthand form, list the indices not already
used in F.

Eg: F1(A,B,C) = m(3,4,5,6,7)

F1'(A,B,C) = m(0,1,2)

Product-of-Maxterms of F  Prod-of-Maxterms of F'

 In maxterm shorthand form, list the indices not already
used in F.

Eg: F1(A,B,C) = M(0,1,2)

F1'(A,B,C) = M(3,4,5,6,7)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Conversion of Canonical Forms

Sum-of-Minterms of F  Product-of-Maxterms of F'

 Rewrite in maxterm shorthand form, using the same
indices as in F.

Eg: F1(A,B,C) = m(3,4,5,6,7)

F1'(A,B,C) = M(3,4,5,6,7)

Product-of-Maxterms of F  Sum-of-Minterms of F'

 Rewrite in minterm shorthand form, using the same
indices as in F.

Eg: F1(A,B,C) = M(0,1,2)

F1'(A,B,C) = m(0,1,2)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

A two-variable function has four possible minterms. We can re-
arrange these minterms into a Karnaugh map.

Now we can easily see which minterms contain common literals.

 Minterms on the left and right sides contain y’ and y
respectively.

 Minterms in the top and bottom rows contain x’ and x
respectively.

x y minterm
0 0 x’y’
0 1 x’y
1 0 xy’
1 1 xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y’ Y
X’ x’y’ x’y
X xy’ xy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Karnaugh map simplifications

Imagine a two-variable sum of minterms:

x’y’ + x’y

Both of these minterms appear in the top row of a Karnaugh
map, which means that they both contain the literal x’.

x’y’ + x’y = x’(y’ + y) [Distributive
]

= x’  1 [y + y’ = 1]
= x’ [x  1 = x]

Y
x’y’ x’y

X xy’ xy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

More two-variable examples

Another example expression is x’y + xy.

 Both minterms appear in the right side, where y is
uncomplemented.

 Thus, we can reduce x’y + xy to just y.

How about x’y’ + x’y + xy?

 We have x’y’ + x’y in the top row, corresponding to x’.

 There’s also x’y + xy in the right side, corresponding to y.

 This whole expression can be reduced to x’ + y.

Y
x’y’ x’y

X xy’ xy

Y
x’y’ x’y

X xy’ xy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

A three-variable Karnaugh map

For a three-variable expression with inputs x, y, z, the
arrangement of minterms is more tricky:

Another way to label the K-map (use whichever you like):

Y
x’y’z ’ x ’y’z x’yz x’yz’

X xy’z ’ xy’z xyz xyz’
Z

 Y
 m0 m1 m3 m2
X m4 m5 m7 m6

 Z

YZ
00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

YZ
00 01 11 10

0 m0 m1 m3 m2X
1 m4 m5 m7 m6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Making the example K-map

Next up is drawing and filling in the K-map.

 Put 1s in the map for each minterm, and 0s in the other squares.

 You can use either the minterm products or the shorthand to show you
where the 1s and 0s belong.

In our example, we can write f(x,y,z) in two equivalent ways.

In either case, the resulting K-map is shown below.
Y

0 1 0 0
X 0 1 1 1

Z

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Grouping the minterms together

The most difficult step is grouping together all the 1s in the K-map.

 Make rectangles around groups of one, two, four or eight 1s.

 All of the 1s in the map should be included in at least one
rectangle.

 Do not include any of the 0s.

 Each group corresponds to one product term. For the simplest
result:

 Make as few rectangles as possible, to minimize the number of
products in the final expression.

 Make each rectangle as large as possible, to minimize the
number of literals in each term.

 It’s all right for rectangles to overlap, if that makes them larger.

Y
0 1 0 0

X 0 1 1 1
Z

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Reading the MSP from the K-map

Finally, you can find the MSP.

 Each rectangle corresponds to one product term.

 The product is determined by finding the common literals in
that rectangle.

For our example, we find that xy + y’z + xz = y’z + xy. (This is one
of the additional algebraic laws from last time.)

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
0 1 0 0

X 0 1 1 1
Z

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Practice K-map 1

Simplify the sum of minterms m1 + m3 + m5 + m6.

Y

X
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Solutions for practice K-map 1

Here is the filled in K-map, with all groups shown.

 The magenta and green groups overlap, which makes each of
them as large as possible.

 Minterm m6 is in a group all by its lonesome.

The final MSP here is x’z + y’z + xyz’.

Y
0 1 1 0

X 0 1 0 1
Z

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Four-variable K-maps

We can do four-variable expressions too!

 The minterms in the third and fourth columns, and in the
third and fourth rows, are switched around.

 Again, this ensures that adjacent squares have common
literals.

Grouping minterms is similar to the three-variable case, but:

 You can have rectangular groups of 1, 2, 4, 8 or 16
minterms.

 You can wrap around all four sides.

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Example: Simplify m0+m2+m5+m8+m10+m13

The expression is already a sum of minterms, so here’s the K-map:

We can make the following groups, resulting in the MSP x’z’ + xy’z.

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z

© Bharati Vidyapeeth’s Institute of Computer Applications and Management , New Delhi-63, by Parul arora
U1.
‹#›

Recurrence Relation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Recurrence Relation
A recurrence relation is a recursive formula that counts the number
of ways to do a procedure involving n objects in terms of the
number of ways to do it with fewer objects.

E.g., an = c1an-1 + c2an-2 , a1 = 0, a2 = 1

A recurrence relation’s starting values are called initial conditions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Reccurence Relation

Proving things about a recurrence relation usually is done by

mathematical induction.

Typical forms of recurrence relations include:

 an = c1an-1 + c2an-2 + . . . + cran-r

 an = c1an-1 + c2

 an = c1an-1 + f(n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Recursive definition of a sequence

Specify one or more initial terms

Specify rule for obtaining subsequent terms from preceding terms

We can use such definitions to solve counting problems that cannot
easily be solved using techniques

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Recurrence Relations

When rule for finding subsequent terms from previous is used
for solving counting problems, we call the rule a recurrence
relation

Stated more formally: A recurrence relation for the sequence
{an} is an equation that expresses an in terms of one or more of
the previous terms of the sequence a0, a1, … an-1 for all integers
n with nn0, where n0 is non-negative

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Solutions
A sequence whose terms satisfy a recurrence relation is called a

solution of the recurrence relation

Example 1: Let {an} be a sequence that satisfies the recurrence
relation an = an-1- an-2 for n = 2, 3, 4 …

 Suppose a0=3 and a1=5. What are a2 and a3?

 a2 = a1 - a0 = 2, a3 = a2 - a1 = -3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Example 2
Find the first 5 terms of a sequence defined as follows:

 recurrence relation: an = nan-1 + n2an-2

 initial condition: a0 = 1, a1 = 1

Applying the rules:

a2 = 2(1) + (2)21 = 6

a3 = 3(6) + (3)21 = 27

a4 = 4(27) + (4)26 = 204

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Example 2
Determine whether {an} is a solution of the recurrence relation an

= 2an-1-an-2 for n=2, 3, 4 … where an = 3n

if an = 3n, then for n  2:

2an-1 - an-2 = 2[3(n-1)] - 3(n-2)

= 2(3n - 3) - 3n + 6

= 6n - 6 - 3n + 6 = 3n

So {an}, where an = 3n, is a solution

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Example 3
Determine whether {an} is a solution of the recurrence relation an =

2an-1-an-2 for n=2, 3, 4 … where an = 2n:

 By this rule, a0 = 20 = 1; a1 = 21 = 2; a2 = 22 = 4

 Applying original recurrence relation:

an = 2a n-1 - a n-2

a2 = 2a1 - a0 substituting actual values:

4 = 2*2 - 1

4 = 3 not true, so {an} where an = 2n is not a solution

© Bharati Vidyapeeth’s Institute of Computer Applications and Management,, New Delhi-63, by Parul Arora. U1.
‹#›

Summary of Recurrence Relations

Initial conditions for a sequence specify terms that precede the first
term where recurrence relation takes effect
Recurrence relation & initial conditions uniquely determine a
sequence, providing a recursive definition of the sequence
Any term of a sequence can be found from initial conditions using
recurrence relation a sufficient number of times (but there are
better ways for computing certain classes of sequences)

