
MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason Asso. Prof, BVICAM U3.1

JAVA Programming
MCA 109

UNIT 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.2

Learning Objectives
• Anonymous Classes and Inner classes in Java: Core

concept and its implementation and types of anonymous
classes, nested and inner classes, and their
implementation

• Event Handling: Different Mechanism, the Delegation
Event Model, Event Classes, Event Listener Interfaces,
Adapter and Inner Classes, working with windows,
Graphics and Text, using AWT controls, Layout managers
and menus, handling Images, animation, sound and
video.

• Swing: Introduction to JFC (Java Foundation Classes),
features of Swing, comparison with AWT, Advanced
Control

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason Asso. Prof, BVICAM U3.3

Anonymous & Inner Classes

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.4

A nested class is a class that
is declared inside another class
or interface.
Anonymous classes are inner
classes with no name. Since
they have no name, we can't
use them in order to create
instances of anonymous
classes. As a result, we have to
declare and instantiate
anonymous classes in a single
expression at the point of use.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.5

Anonymous Classes
• Anonymous classes enable you to make your code

more concise.

• They enable you to declare and instantiate a class at
the same time. They are like local classes except that
they do not have a name.

• Use them if you need to use a local class only once.

• While local classes are class declarations, anonymous
classes are expressions, which means that you define
the class in another expression.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6

Example
public class HelloWorldAnonymousClasses {public void greet();

public void greetSomeone(String someone) }

public void sayHello() {

class EnglishGreeting implements HelloWorld { String name = "world";

public void greet() {greetSomeone("world"); }

public void greetSomeone(String someone) {

name = someone;

System.out.println("Hello " + name); }}

HelloWorld englishGreeting = new EnglishGreeting();

};

englishGreeting.greet();

public static void main(String... args) {

HelloWorldAnonymousClasses myApp =

new HelloWorldAnonymousClasses();

myApp.sayHello();

}

}

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.7

NOTE
• Like local classes, anonymous classes can capture variables; they have the same access to local variables of the

enclosing scope:

• An anonymous class has access to the members of its enclosing class.

• An anonymous class cannot access local variables in its enclosing scope that are not declared as final or
effectively final.

• Like a nested class, a declaration of a type (such as a variable) in an anonymous class shadows any other
declarations in the enclosing scope that have the same name. See Shadowing for more information.

• Anonymous classes also have the same restrictions as local classes with respect to their members:

• You cannot declare static initializers or member interfaces in an anonymous class.

• An anonymous class can have static members provided that they are constant variables.

• Note that you can declare the following in anonymous classes:

• Fields

• Extra methods (even if they do not implement any methods of the supertype)

• Instance initializers

• Local classes

• However, you cannot declare constructors in an anonymous class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.8

Event Handling

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.9

Delegation Event Model

• Delegation event model, defines standard and consistent
mechanisms to generate and process events.

• Based on the concept of an ‘Event Source’ and ‘Event
Listeners’.

• Any object that generates these messages (or events) is
called an “Event Source”.

i.e. a source is an object that generates an event.

• An user interface element is able to “delegate” the
processing of an event to a separate piece of code

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.10

• A source must register listeners in order for the
listeners to receive notifications about a specific type
of event.

• Notifications are sent only to listeners that want to
receive them.

• Each type of event has its own registration method.

• The methods that add or remove listeners are provided
by the source that generates events.

Delegation Event Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.11

Delegation Event Model

Core Concepts:
 Events
 Event Sources
 The Event Classes
 The Event Listeners
 Explicit Event Enabling
 Adapters

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.12

Delegation Event Model

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.13

1. Events

• In the delegation model, an event is an object that
describes a state change in a source.

• It can be generated as a consequence of a person
interacting with the elements in a GUI.

• Some of the activities that cause events to be
generated are pressing a button, entering a character
via the keyboard, selecting an item in a list, and clicking
the mouse.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.14

2. Event Sources

• A source is an object that generates an event.

• This occurs when the internal state of that object
changes in some way.

• Sources may generate more than one type of event.

• A source must register listeners in order for the
listeners to receive notifications about a specific type of
event.

public void addTypeListener(TypeListener el)

• For example, the method that registers a keyboard
event listener is called addKeyListener().

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.15

2. Event Sources

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.16

• A listener is an object that is notified when an event
occurs.

• Two major requirements for a listener
Must have been registered with one or more sources to receive

notifications

Must implement methods to receive and process these
notifications

• For each event type that can occur, the application can
add event listeners, that have methods invoked when the
event occurs.

• The listeners are defined as interfaces in
java.awt.event, so that an actual listener has to
implement these methods.

3. Event Listener

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.17

3. Event Listener Interfaces

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.18

4. Event Class
• The classes that represent events are at the core of

Java’s event handling mechanism.

• At the root of the Java event class hierarchy is
EventObject, which is in java.util.

• It is the superclass for all events.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.19

• ActionEvent generated by component activation
• AdjustmentEvent generated by adjustment of adjustable components

such as scroll bars
• TextEvent generated when a text component is modified
• ItemEvent generated when an item is selected from a list,

choice or check box
• ComponentEvent When a component is hidden, shown, moved or resized.
• ContainerEvent generated when components are added to or removed

from a container
• FocusEvent generated when a component receives input focus
• KeyEvent generated by keyboard activity
• MouseEvent generated by mouse activity
• PaintEvent generated when a component is painted
• WindowEvent generated by window activity like minimizing or maximizing

4. Event Class

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.20

ActionEvent Class

• An ActionEvent is generated when a button is pressed,
a list item is double-clicked, or a menu item is selected.

• Components that generate this event
Button - clicked

List – list item is double clicked

MenuItem – Selected

TextField – when the Enter key is hit in the text field

• Methods
addActionListener

removeActionListener

• ActionListener
 actionPerformed(ActionEvent evt)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.21

AdjustmentEvent Class

• An AdjustmentEvent is generated by a scroll bar.
There are five types of adjustment events.

• Useful method
int getValue() -> returns current value

• Other methods
addAdjustmentListener

removeAdjustmentListener

• AdjustmentListener
 adjustmentValueChanged(AdjustmentEvent e)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.22

ComponentEvent Class
• AComponentEvent is generated when the size, position, or

visibility of a component is changed.

• There are four types of component events- hidden, shown, moved
or resized

• Generated by Component class & its subclasses

• Useful method
Component getComponent()

• ComponentListener
componentHidden(ComponentEvent evt)

componentMovedComponentEvent evt)

componentResized(ComponentEvent evt)

componentShown(ComponentEvent evt)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.23

• Components that generate this event
 Checkbox – state of checkbox changes

 CheckboxMenuItem – statte of associated checkbox changed

 Choice – item selected or desected

 List - item selected or desected

• Useful method
 Object getItem()- returns object that was selected or

deselected

 Int getStateChange() –returns SELECTED/ DESELECTED two
constants from ItemEvent

• ItemListeneter
 itemStateChanged(ItemEvent evt)

ItemEvent

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.24

FocusEvent
• AFocusEvent is generated when a component gains or loses

input focus.

• Generated when a component gains or loses focus

• Useful method

 getComponet() determine the component that lost or gained
focus

 getID() determine whether the focus is lost or gained
(FocusEvent.FOCUS_LOST, FocusEvent.FOCUS_GAINED)

 Focus can be lost either permanently or temporarily can be
determined using function

 boolean isTemporary()

• FocusListener

 focusGained(FocusEvent evt)

 focusLost(FocusEvent evt)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.25

KeyEvent
• Generated when the user presses or release a key, or does both,

characterized by the constants

 Public static final int KEY_PRESSED

 Public static final int KEY_RELEASED

 Public static final int KEY_TYPED

• Inherited getID() method returns the specific type of event denoted by
constatnts

• Useful methods

 int getKeyCode() -> to get the integer key-code associated with the key,
defined as constants in KeyEvent

 char getKeyChar() -> for KEY_TYPED events

• KeyListener

 keyPressed(KeyEvent evt)

• keyReleased(KeyEvent evt)

• keyTyped(KeyEvvent evt)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.26

MouseEvent
• Generated when user moves the mouse or presses a mouse

button

• Exact action is identified by the constatnts

 public static final int MOUSE_PRESSED

 public static final int MOUSE_RELEASED

 public static final int MOUSE_CLICKED

 public static final int MOUSE_DRAGGED

 public static final int MOUSE_MOVED

 public static final int MOUSE_ENTERED

 public static final int MOUSE_EXITED

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.27

MouseEvent..
• Inherited getID() method returns the specific type of event

denoted by one of the constant

• Useful method

 int getX(), int getY(), Point getPoint()

used to get the x and y position of the event

 int getClickCount()

• returns number of mouse click

• MouseListener

• MouseMotionListener

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.28

MouseEvent..

• MouseListener
 mouseClicked(MouseEvent evt)

 MouseEntered(MouseEvent evt)

 mouseExited(MouseEvent evt)

 mousePressed(MouseEvent evt)

 mouseReleased(MouseEvent evt)

• MouseMotionListener
 mouseDragged(MouseEvent evt)

 mouseMoved(MouseEvent evt)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.29

WindowEvent

• Generated when an important operation is performed on
a window, identified by constants
 public static final int WINDOW_OPENED

 public static final int WINDOW_CLOSING

 public static final int WINDOW_CLOSED

 public static final int WINDOW_ICONIFIED

 public static final int WINDOW_DEICONIFIED

 public static final int WINDOW_ACTIVATED

 public static final int WINDOW_ DEACTIVATED

• useful method
 Window getWindow()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.30

WindowEvent..

• WindowListener

• WindowActivated(WindowEvent evt)

• WindowClosed(WindowEvent evt)

• WindowClosing(WindowEvent evt)

• WindowDeactivated(WindowEvent evt)

• WindowDeiconified(WindowEvent evt)

• WindowIconified(WindowEvent evt)

• WindowOpened(WindowEvent evt)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.31

5. EventAdapter Class

• An adapter class provides an empty implementation of
all methods in an event listener interface.

• Java.awt.event package defines an adapter class to
each low level listener interface

• Adapter classes are useful when you want to receive
and process only some of the events that are handled
by a particular event listener interface.

• An event adapter implements stubs for all the methods
of the corresponding interface

• A listener can subclass the adapter and override only
stub method of interest

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.32

5. EventAdapter..

ComponentListener ComponentAdapter

ContainerLitener ContainerAdapter

FocusListener FocusAdapter

KeyListener KeyAdapter

MouseListener MouseAdapter

MouseMotionListener MouseMotionAdapter

WindowListener WindowAdapter

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.33

Using Event Delegation Model
1. Implement the appropriate interface in the listener so

that it will receive the type of event desired.
2. Implement code to register and unregister (if necessary)

the listener as a recipient for the event notifications.

Remember that a source may generate several types of
events. Each event must be registered separately.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.34

Abstract Window Toolkit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.35

Abstract Window Toolkit

• AWT was introduced in JDK 1.1.

• The AWT contains numerous classes and methods that
allow you to create and manage windows.

• The AWT classes are contained in packages: java.awt,
java.awt.event

• Foundation upon which Swing is built.

• Difficult to build an attractive GUI

• import java.awt.*;
import java.awt.event.*;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.36

Java.awt Overview

• Provides the primary facilities of the AWT
 AWT Component

 Managing the layout of components within container

 Support event handling

 Rendering graphics in GUI components using color, fonts,
images and polygons

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.37

AWT Class Hierarchy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.38

Containers and Components

• The job of a Container is to hold and display
Components

• Some common subclasses of Component are Button,
Checkbox, Label, Scrollbar, TextField, and TextArea

• A Container is also a Component
 This allows Containers to be nested

• Some Container subclasses are Panel (and Applet),
Window, and Frame

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.39

Component
• Component is the superclass of most of the displayable classes

defined within the AWT. Note: it is abstract.
• Menu Component is another class which is similar to Component

except it is the superclass for all GUI items which can be displayed
within a drop-down menu.

• The Component class defines data and methods which are relevant
to all Components

setBounds
setSize
setLocation
setFont
setEnabled
setVisible
setForeground -- colour
setBackground -- colour

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.40

Container
• Subclass of Component.
• Contains components
• For a component to be placed on the screen, it must be placed
• within a Container
• The Container class defined all the data and methods necessary for

managing groups of Components
add
getComponent
getMaximumSize
getMinimumSize
getPreferredSize
remove
removeAll

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.41

Panel

• Concrete subclass of the Container class

• Doesn’t have a title, menus or borders

• Ideal for packing other components and panels to build
component hierarchies using inherited add() method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.42

Window
•Represents top level window that has no title, menus or borders

•Top level window can’t be incorporated into other components

•void pack() method initiates the layout manager

•void show() used to make the window visible and bring it to the front
of any other windows

•Windows are initially hidden unlike other components

•void dispose() used to free the windowing resources

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.43

Frame
• User resizable and movable top-level window that can have a title-
bar, an icon and menus

• Can be root of a component hierarchy

• Two constructors

• Frame()/ Frame(String title)

{
Frame guiFrame = new Frame(“my frame”);

guiFrame.add(new Button(“OK”));

guiFrame.setSize(200,300);

guiFrame.pack();

guiFrame.setVisible(true);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.44

Dialog

 Defines an independent, user resizable window that can
have a title-bar and a border

 Serves as a container

 Can be root of a component hierarchy

 Can be modal/ non-modal

 Dialog constructors

 Dialog(Frame parent) / Dialog(Frame parent, Boolean
modal) / Dialog(Frame parent, String title) /
Dialog(Frame parent, String title, Boolean modal)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.4545

Example

Container (Applet)

Containers (Panels)

Component (Canvas)

Components (Buttons)

Components (Labels)

Components (TextFields)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.46

GUI control components

 Primary elements of GUI

 Concrete subclasses of the Component class

 Essential steps in making use of a GUI control
component:
o Create a component using constructor

 Button b = new Button(“OK”);

o Add to a container using a layout manager

 guiFrame.add(guiComponent)

o Register Listner with the GUI component to receive events.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.4747

Some types of components

Label Button

Button

Checkbox

Choice

List

Scrollbar

TextField TextArea

CheckboxGroupCheckbox

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.4848

Creating Components
Label lab = new Label ("Hi, Dave!");
Button but = new Button ("Click me!");
Checkbox toggle = new Checkbox ("toggle");
TextField txt =

new TextField ("Initial text.", 20);
Scrollbar scrolly = new Scrollbar

(Scrollbar.HORIZONTAL, initialValue,
bubbleSize, minValue, maxValue);

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.4949

Creating a Frame
• When you create an Applet, you get a Panel “for free”
• When you write a GUI for an application, you need to

create and use a Frame:
 Frame frame = new Frame();
 frame.setTitle("My Frame");
 frame.setSize(300, 200); // width, height
 ... add components ...
 frame.setVisible(true);

• Or:
 class MyClass extends Frame {
 ...

setTitle("My Frame"); // in some instance method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.5050

Adding components to the Frame
class SimpleFrame extends Frame{

public static {

add (lab); // same as this.add(lab)
add (but);
add (toggle);
add (txt);
add (scrolly);

...

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.51

Frame
import java.awt.*;

public class TestFrame extends Frame {
public TestFrame(String title){

super(title);
}
public static void main(String[] args){

Frame f = new TestFrame("TestFrame");
f.setSize(400,400);
f.setLocation(100,100);
f.show();

}
}

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.52

Buttons

public class TestButton extends Frame {
public TestButton(String title){

super(title);
Button hw = new Button("Hello World!");
add(hw);

}
….

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.53

Labels

public class TestLabel extends Frame {
public TestLabel(String title){

super(title);
Label label1 = new Label();
label1.setText("Label1");
Label label2 = new Label("Label2");
label2.setAlignment(Label.CENTER);
Label label3 = new Label("Label3");

add(label1,"North");
add(label2,"Center");
add(label3,"South");

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.54

Checkboxes

public class TestCheckbox extends Frame {
public TestCheckbox(String title){

super(title);

CheckboxGroup cbg = new CheckboxGroup();
Checkbox cb1 = new Checkbox("American Express",cbg,false);
Checkbox cb2 = new Checkbox("Visa",cbg,false);
Checkbox cb3 = new Checkbox("Mastercard",cbg,true);
add(cb1,"North");
add(cb2,"Center");
add(cb3,"South");

}
…
}

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.55

Choices

public class TestChoice extends Frame {
public TestChoice(String title){

super(title);

Choice choice = new Choice();
choice.add("ichi");
choice.add("ni");
choice.add("san");
add(choice);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.56

TextField & TextArea
public class TestText extends Frame {

public TestText(String title){
super(title);

TextField textField = new TextField(20);
TextArea textArea = new TextArea(5, 20);

textArea.setEditable(false);
textField.setText("TextField");
textArea.setText("TextArea Line1 \n TextArea Line2");
add(textField,"North");
add(textArea,"South");

}
…
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.57

Lists
public class TestList extends Frame {

public TestList(String title){
super(title);
List l = new List(2, true); //prefer 2 items visible
l.add("zero");
l.add("uno");
l.add("dos");
l.add("tres");
l.add("cuatro");
l.add("cinco");
l.add("seis");
l.add("siete");
l.add("ocho");
l.add("nueve");
add(l);

}

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.58

Menu Component

• MenuComponent

 MenuBar

 MenuItem

Menu

PopupMenu

CheckboxMenuItem

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.59

How to Use Menus?
public class TestMenu extends Frame {

public TestMenu(String title){
super(title);

MenuBar mb = new MenuBar();
setMenuBar(mb);

Menu m1 = new Menu("Menu 1"); mb.add(m1);
MenuItem mi1_1 = new MenuItem("Menu Item 1_1"); m1.add(mi1_1);
m1.addSeparator();
MenuItem mi1_2 = new MenuItem("Menu Item 1_2"); m1.add(mi1_2);

Menu m2 = new Menu("Menu 2"); // mb.add(m2);
m1.add(m2);
MenuItem mi2_1 = new CheckboxMenuItem("Menu Item 2_1");
m2.add(mi2_1); }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.60

Layout of Components

• BorderLayout
 north, south, west, east &

center

• FlowLayout
 left to right & top down

• CardLayout
 stack of panels

• GridLayout
 tabular form (rows &

columns)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6161

1. Flow Layout
• The components are arranged in the container from left

to right in the order in which they were added. When
one row becomes filled, a new row is started.

• FlowLayout is the default Layout Manager for Applets
and Panels.

• Look at the API for FlowLayout constructor and the add
method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.62

Flow Layout..
import java.awt.*;

import java.awt.event.*;

public class SimpleFrame1

{

public static void main (String[] args)

{

Frame frame =new Frame("test me");

frame.setLayout(new FlowLayout());

Button button1 = new Button("button1");

frame.add(button1);

Button button2 = new Button("button2");

frame.add(button2);

Button button3 = new Button("button3");

frame.add(button3);

…

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6363

2. Border Layout

• At most five components can be
added

• If you want more components, add a
Panel, then add components to it.

• setLayout (new BorderLayout());

add (new Button("NORTH"), BorderLayout.NORTH);

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6464

Border Layout with five Buttons

{
setLayout (new BorderLayout ());
add (new Button ("NORTH"), BorderLayout.NORTH);
add (new Button ("SOUTH"), BorderLayout.SOUTH);
add (new Button ("EAST"), BorderLayout.EAST);
add (new Button ("WEST"), BorderLayout.WEST);
add (new Button ("CENTER"), BorderLayout.CENTER);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6565

Using a Panel

Panel p = new Panel();
add (p, BorderLayout.SOUTH);
p.add (new Button ("Button 1"));
p.add (new Button ("Button 2"));

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6666

3. Grid Layout

• The GridLayout manager
divides the container up into
a given number of rows and
columns:

new GridLayout(rows, columns)

• All sections of the grid are equally sized and as large as
possible

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6767

Complete example: GridLayout

setLayout(new GridLayout(2, 3));
add(new Button("One"));
add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four"));
add(new Button("Five"));

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.68

• In a CardLayout only one of its components is visible at
any given time.

• Think of the components as a set of "cards". Only one
card is visible at a time, but you can flip from one card
to another.

• Methods are provided in the CardLayout class for
flipping to the first card, to the next card, and to the last
card in the deck.

5. Card Layout Manager

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.69

Graphics in JAVA

• Most important feature

• JAVA’s coordinate System
 Origin(0,0) in the upper left corner

• Graphic Class
Includes methods for drawing different types of shapes

Argument’ represents end points, corner or starting
locations of a shape

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.70

Lines & Rectangle

• g.drawLine(10,10,50,50); //10,10 to 50,60

• g.drawRect(10,60,40,30);
• //10,60 (top left), 40(width), 30(height) draw only

outlines

• g.fillRect(10,60,40,3//draw solid box
g.drawRoundRect(10,60,40,30,5,5);

g.fillRoundRect(10,60,40,30,5,5);

• //with rounded corners
0);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.71

Circle & Ellipses

Public void paint(graphics g){
g.drawOval(10,20, 100,100);

//10, 20(top left), 100 (width), 100(height)

g.setColor(Color.green);

g.fillOval(12,22,90,90);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.72

72

drawLine(x1,y1,x2,y2)

class MyCanvas extends Canvas {
public void paint(Graphics g){

g.setColor(Color.blue);
int x1 = 161,

y1 = 186,
x2 = 181,
y2 = 206;

g.drawLine(x1,y1,x2,y2);
}

(x1,y1)

(x2,y2)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.73

73

How to Use Graphics Primitives?

• For drawing geometric shapes, texts, and images

• An abstract class
 the extended class must override paint()

Oval

Rectangle

Arc

Line

RoundRectangle

Polygon

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.74

74

fillOval(x,y,w,h)
drawOval(x,y,w,h)

g.setColor(Color.blue);
{

int x = 239,
y = 186,
w = 48,
h = 32;

g.fillOval(x,y,w,h);
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.75

fillPolygon(int[] xs, int[] ys)
drawPolygon(int[] xs, int[] ys)

g.setColor(Color.green);
{
int xs[] = {161,161,185,209,185,161};
int ys[] = {310,334,358,334,310,310};
g.fillPolygon(xs,ys,6);
}

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.76

fillRect(x,y,w,h)
drawRect(x,y,w,h)

g.setColor(Color.pink);
{

int x = 239,
y = 248,
w = 48,
h = 32;

g.fillRect(x,y,w,h);
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.77

fillRoundRect(x,y,w,h,rw,rh)
drawRoundRect(x,y,w,h,rw,rh)

g.setColor(Color.yellow);
{

int x = 161,
y = 248,
w = 48,
h = 32,
roundW = 25,
roundH = 25;

g.fillRoundRect(x,y,w,h,roundW,roundH);
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.78

drawString(s,x,y)
FontMetrics

(x,y)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.79

drawString, Font, & FontMetrics

class MyCanvas extends Canvas {

public void paint(Graphics g){
g.setFont(new Font("Dialog",0,20));
FontMetrics fm = g.getFontMetrics();
int x = 100;
int y = 100;
g.drawString("Hello",x,y);
y = y+fm.getHeight();
g.drawString("World",x,y);

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.80

drawImage(image,x,y,w,h,ob)

Image im = Toolkit.getDefaultToolkit().getImage(name);

g.drawImage(im, x, y, w, h, observer);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.81

drawImage
public class TestImage extends Frame {

Image im;

public TestImage(String title){
super(title);
im = Toolkit.getDefaultToolkit().getImage("jp2.jpg");
if (im==null){

System.out.println("No image");
System.exit(0);

}
}
public void paint(Graphics g){

g.drawImage(im,0,0,im.getHeight(this),im.getWidth(this),this);
}

…}

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.82

Exercise
• Write an AWT GUI application (called AWTCounter) Each time

the "Count" button is clicked, the counter value shall increase by
1.

• The program has three components:
 a Label "Counter";

 a non-editable TextField to display the counter value; and

 a Button "Count".

• Swing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.83

About JFC and Swing

• JFC – JavaTM Foundation Classes

• Encompass a group of features for constructing
graphical user interfaces (GUI).

• Implemented without any native code.

• “Swing” is the codename of the project that developed
the first JFC components (JFC 1.11).

• The name “Swing” is frequently used to refer to new
components and related API.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.84

To build a GUI

• Make somewhere to display things--a Frame, a
Window, or an Applet

• Create controls (buttons, text areas, etc.)

• Add your controls to your display area

• Arrange, or layout, your controls

• Attach Listeners actions to your controls
 Interacting with a Component causes an Event to occur
 A Listener gets a message when an interesting event occurs,

and executes some code to deal with it

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.85

Swing

• Same concepts as AWT

• Doesn’t work in ancient Java implementations (Java 1.1
and earlier)

• Many more controls, and they are more flexible
 Some controls, but not all, are a lot more complicated

• Gives a choice of “look and feel” packages

• Much easier to build an attractive GUI

• import javax.swing.*;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.86

Swing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.87

Swing Features
• Swing Components

• Pluggable Look & Feel

• Data Transfer

• Internationalization and Localization

• Accessibility

• System Tray Icon Support

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.88

Swing Components

• Swing Components
 Basic Controls

Jbutton

JCheckBox

JComboBox

Jlist

Jmenu

JRadioButton

Jslider

Jspinner

JTextField

JPasswordField

 Interactive Displays
JColorChooser

JEditorPane

JFileChooser

JTable

JTextArea

JTree

• Uneditable Information Display

JLabel

JProgressBar

JSeperator

JToolTip

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.89

Swing Components..
 Top Level Container

Jframe

JDialog

JApplet

 General Purpose Container
JPanel

JScrollPane

JSplitPane

JTabbed Pane

JToolBar

 Special Purpose Container
JInternalFrame

JlayeredPane

JRootPane

Don’t add a component
directly to a top-level
container.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.90

Top Level Containers (cont)

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.91

Pluggable look & Feel
• Swing toolkit allows you to decide how to configure the particular look

and feel of your application

• If you don't specify a look and feel, the Swing UI manager figures out
which one to use

• Swing ships with four look and feels:

 Java (also called Metal)

 Microsoft Windows

 CDE/Motif

 GTK+ (GIMP Tool Kit)

cross-platform widget toolkit for creating graphical user
interfaces)

GNU Image Manipulation Program

 there are many available for free on the Internet.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.92

Pluggable look & Feel..

• options for setting a look and feel include
 Leave it up to the Swing UI manager

 Use the look and feel of the native platform

 Specify a particular look and feel

 Create your own look and feel using the Synth package.

 Use an externally provided look and feel.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.93

Pluggable Look and Feel

Each picture shows the same program but with a
different look and feel

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.94

Data Transfer

• Swing toolkit supports the ability to transfer data
between components
 within the same Java application

 between different Java applications

 between Java and native applications

• Data can be transferred via
 a drag and drop gesture

 or via the clipboard using cut, copy, and paste

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.95

Internationalization and Localization

• the process of designing an application so that the user
can run it using his or her cultural preferences without
modifying or recompiling the code

• cultural preferences, collectively known as locale,
include :
 language

 currency formatting

 time and date formatting

 numeric formatting

• Localization is the process of translating the text to a
particular language and adding any locale-specific
components.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.96

Accessibility
• Assistive technologies exist to enable people with permanent or

temporary disabilities to use the computer.

• This includes a wide variety of techniques and equipment

 voice interfaces

 Magnifiers

 screen readers

 closed captioning

 keyboard enhancements, and so on

• A certain level of accessibility is built-in to all Swing components, but full
accessibility can be achieved by following some simple rules

• For example, assign tool tips, keyboard alternatives, and textual
descriptions for images, wherever possible.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.97

Example 1
import javax.swing.*;

public class HelloWorldSwing {

public static void main(String[] args) {

JFrame frame = new JFrame("HelloWorldSwing");

final JLabel label = new JLabel("Hello World");

frame.getContentPane().add(label);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.pack();

frame.setVisible(true);

}

}

pack() causes a window to be
sized to fit the preferred size and

layouts of its sub-components

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.98

Example 2

import javax.swing.*;

public class HelloWorldFrame extends JFrame {

public HelloWorldFrame() {

super(“HelloWorldSwing”);

final JLabel label = new JLabel("Hello World");

getContentPane().add(label);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pack();

setVisible(true);

}

public static void main(String[] args) {

HelloWorldFrame frame = new HelloWorldFrame();

}

}

In this example a
custom frame is

created

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.99

JDialog

• Every dialog is dependent on a frame
 Destroying a frame destroys all its dependent dialogs.

 When the frame is iconified, its dependent dialogs disappear
from the screen.

 When the frame is deiconified, its dependent dialogs return to
the screen.

• A dialog can be modal. When a modal dialog is visible it
blocks user input to all other windows in the program.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.100

JDialog (cont)

• To create custom dialogs, use the JDialog class directly
(as in the previous examples).

• Swing provides several standard dialogs
 JProgressBar, JFileChooser, JColorChooser, ...

• The JOptionPane class can be used to create simple
modal dialogs
 icons, title, text and buttons can be customized.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.101

Example 3
Object[] options = {"Yes!", "No, I'll pass",

"Well, if I must"};

int n = JOptionPane.showOptionDialog(

frame, "Duke is a cartoon mascot. \n" +

"Do you still want to cast your vote?",

"A Follow-up Question",

JOptionPane.YES_NO_CANCEL_OPTION,

JOptionPane.QUESTION_MESSAGE,

null,

options,

options[2]);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.102

Layout Management

• The process of determining the size and position of
components.

• Layout management can be done using absolute
positioning
 Size and position of every component within the container

must be specified.
 Does not adjust well when the top-level container is resized.
 Does not adjust well to differences between users and

systems, such as font size.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.103

Layout Management (cont)

• Layout management is often performed using layout
mangers
 Components can provide size and position hints to layout

managers, but layout managers have the final say on the size
and position of those components.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.104

Layout Management (cont)

• Layout hints
 Minimum, preferred and maximum size

 X axis alignment, Y axis alignment

• Customizing layout hints
 Invoking setter methods: setMinimumSize, setAlignmentX, ...

 Subclassing and overriding the getter methods:
getMinimumSize, getAlignmentX, ...

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.105

Layout Management (cont)

• The Java platform supplies five commonly used layout
managers:
 BorderLayout

 BoxLayout

 FlowLayout

 GridLayout

 GridBagLayout

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.106

Layout Management (cont)

• When using the add method to put a component in a
container, the container’s layout manager must be taken
into account.
 Relative position (BorderLayout)
panel.add(component, BorderLayout.CENTER);

 Order of addition (BoxLayout, GridLayout, ...)

panel.add(component);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.107

BorderLayout

• Has five areas available to hold components
 north, south, east, west and center

• All extra space is placed in the center area
 Only the center area is affected when the container is

resized.

• Default layout manager of content panes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.108

BoxLayout

• Places components in a single row (left to right)
or column (top to bottom).

• Respects component’s maximum size and
alignment hints.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.109

FlowLayout

• Places components from left to right, starting new
rows if necessary.

• Default LayoutManager of JPanel

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.110

GridLayout

• Places components in a requested number of
rows and columns.

• Components are placed left-to-right and top-to-
bottom.

• Forces all components to be the same size
 as wide as the widest component's preferred width
 as high as the highest component’s preferred height

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.111

Events Handling

• Every time a user types a character or pushes a
mouse button, an event occurs.

• Any object can be notified of an event by
registering as an event listener on the
appropriate event source.

• Multiple listeners can register to be notified of
events of a particular type from a particular
source.

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.112

Types of Event Listeners

Act that results in event Listener type

User clicks a button, presses Return while typing in a text
field, or chooses a menu item

ActionListener

User closes a frame (main window) WindowListener

User presses a mouse button while the cursor is over a
component

MouseListener

User moves the mouse over a component MouseMotionListener

Component becomes visible ComponentListener

Component gets the keyboard focus FocusListener

Table or list selection changes ListSelectionListener

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.113

Implementing an Event Handler

• Implement a listener interface or extend a class that
implements a listener interface.

• Register an instance of the event handler class as a
listener upon one or more components.

• Implement the methods in the listener interface to
handle the event.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.114

Example 4

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

numClicks++;

label.setText(labelPrefix + numClicks);

}});

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.115

The Source

1. import package

2. set up top level container
(e.g. JFrame)

3. apply layout
(e.g. BorderLayout)

4. add components
(e.g. Label, Button)

5. REGISTER listeners

6. show it to the world !

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.116

JTable
declares the column names in a String array

String[] columnNames = {"First Name", "Last Name", "Sport", "# of
Years", "Vegetarian"};

Its data is initialized and stored in a two-dimensional Object array:

Object[][] data = { {"Kathy", "Smith", "Snowboarding", new
Integer(5), new Boolean(false)}, {"John", "Doe", "Rowing", new
Integer(3), new Boolean(true)}, {"Sue", "Black", "Knitting", new
Integer(2), new Boolean(false)}, {"Jane", "White", "Speed
reading", new Integer(20), new Boolean(true)}, {"Joe", "Brown",
"Pool", new Integer(10), new Boolean(false)} };

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.117

JTable

• Then the Table is constructed using these data and
columnNames:

JTable table = new JTable(data, columnNames);

JScrollPane scrollPane = new JScrollPane(table);
table.setFillsViewportHeight(true);

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.118

JTree
//Where instance variables are declared:

private JTree tree;

...

public TreeDemo() {

...

DefaultMutableTreeNode top = new DefaultMutableTreeNode("The
Java Series");

createNodes(top);

tree = new JTree(top);

... JScrollPane treeView = new JScrollPane(tree);

... }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.119119

AWT and Swing

• AWT Buttons vs. Swing JButtons:
 A Button is a Component
 A JButton is an AbstractButton, which is a JComponent, which is a Container,

which is a Component
• Containers:

 Swing uses AWT Containers

• AWT Frames vs. Swing JFrames:
 A Frame is a Window is a Container is a Component
 A JFrame is a Frame, etc.

• Layout managers:
 Swing uses the AWT layout managers, plus a couple of its own

• Listeners:
 Swing uses many of the AWT listeners, plus a couple of its own

• Bottom line: Not only is there a lot of similarity between AWT and Swing,
but Swing actually uses much of the AWT

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.120120

Summary I: Building a GUI

• Create a container, such as Frame or Applet
• Choose a layout manager

• Create more complex layouts by adding Panels; each
Panel can have its own layout manager

• Create other components and add them to whichever
Panels you like

MCA-109, Object Oriented Programming with Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U3 41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.121121

Summary II: Building a GUI

• For each active component, look up what kind of
Listeners it can have

• Create (implement) the Listeners
 often there is one Listener for each active component

 Active components can share the same Listener

• For each Listener you implement, supply the methods
that it requires

• For Applets, write the necessary HTML

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.122122

Vocabulary
• AWT – The Abstract Window Toolkit provides basic graphics tools

(tools for putting information on the screen)
• Swing – A much better set of graphics tools
• Container – a graphic element that can hold other graphic

elements (and is itself a Component)
• Component – a graphic element (such as a Button or a TextArea)

provided by a graphics toolkit
• listener – A piece of code that is activated when a particular kind

of event occurs
• layout manager – An object whose job it is to arrange

Components in a Container

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.123

Swing vs. AWT

• Swing is bigger, slower, and more complicated
 But not as slow as it used to be

• Swing is more flexible and better looking

• Swing and AWT are incompatible--you can use either,
but you can’t mix them
 Actually, you can, but it’s tricky and not worth doing

• Learning the AWT is a good start on learning Swing

• Many of the most common controls are just renamed
 AWT: Button b = new Button ("OK");

Swing: JButton b = new JButton("OK");

