
MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.1

JAVA Programming
MCA 109

UNIT 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.2

Learning Objectives
• Exception Handling: Fundamentals exception types,

uncaught exceptions, throw, throw, final,built in
exception, creating your own exceptions,

• Multithreaded Programming: Fundamentals, Java
thread model: priorities, synchronization, messaging,
thread classes, Runnable interface, inter thread
Communication, suspending,resuming and stopping
threads.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.3

Learning Objectives
• The collections Framework: The collection Interface,

Collection Architecture in Java, Collection Classes,
traversing Collections, working with Maps &Sets

• Networking Fundamentals: Basics, networking
classes and interfaces, using java.net package, doing
TCP/IP and Data-gram Programming.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.4

Taken care
by Compiler

Exceptions

Runtime

Types Of Errors

Syntax

Taken care by
appropriate paths

Responsibility
of Programmer

Linker

Errors

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.5

Errors vs. Exception

• An Error “indicates serious problems that a reasonable
application should not try to catch.”

• An Exception “indicates conditions that a reasonable
application might want to catch.”

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.6

• Describe internal error

• Exceptions of the type Error are caused by Java run-time
environment

 OutofMemoryError

 subclasses AssertionError of the java.lan.Error class is used
by the Java assertion facility.

 Other subclasses define exceptions that indicate class linkage
(Linkage Error), thread(ThreadDeath) and virtual machine
(VirtualMachineError) related problems.

• These are invariably never explicitly caught and are usually
irrecoverable

• Consider as unchecked Exception

Error

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.7

Exception Types

• There are two types of exceptions in class Exception:

1. Checked exceptions

 When you call a method that throws a checked
exception, you must tell the compiler what you
are going to do about the exception if it is ever
thrown.

2. Unchecked exceptions

 The compiler does not require you to keep track
of unchecked exceptions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.8

Checked vs. Unchecked Exception

• Checked Exceptions are the exceptions that are checked at
compile time.

• If some code within a method throws a checked exception, then the
method must either handle the exception or it must specify the
exception using throws keyword.

• Unchecked are the exceptions that are not checked at compiled
time. In C++, all exceptions are unchecked, so it is not forced by
the compiler to either handle or specify the exception.

• In Java, exceptions under Error and RuntimeException classes
are unchecked exceptions, everything else under throwable is
checked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.9

Exception Types..
• Subclasses of Error & RuntimeException are unchecked

expections

• All other subclasses of the class Exception are checked.

• Exceptions inherit from RuntimeException include

 A bad cast

 An out-of-bounds array access

 A null pointer access

• Exceptions not inherit from RuntimeException include

 Trying to read past the end of file

 Example
IOException

AWTException

SQLException

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.10

Exception Class Hierarchy
Object

Error

Throwable

Exception

IOException RuntimeException

ArrayIndexOutOfBoundsExceptionArithmeticException

Exception – Except RuntimeException
Should be caught
Error - Not to be caught
RTE - can be avoided by programmer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.11

Exception Hierarchy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.12

Built-in Exceptions

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.13

Exception Handling

• A Java exception is an object that describes an error
condition occurred in the code.

• When an exception occurs
 An object representing that exception is created and thrown

in the method that caused the exception.

 That method may choose to handle the exception itself, or
pass it on.

 At some point, the exception is caught and processed

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.14

Exception Handling

• Form of error trapping

• Dealing with errors
 Return to safe state and enable the user to execute other

commands

 Allow the user to save all work and terminate the program
gracefully

• Objective is to transfer control from where the error
occurred to an error handler that can deal with the
situation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.15

OO

Handling Runtime Errors

Non-OO

ExceptionsError
Codes

Too many if-else

Difficult to monitor return Difficult to monitor return
values in deeply nested calls

If (fun1() == ERROR_VALUE)
// handle the error

else
// do normal things

if (fun2() == NULL)
// handle the error

else
// do normal things

if (fun3() == -1)
// handle the error

else
// do normal things

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.16

Catching Exceptions

• Every exception should be handled somewhere in your program.

• If an exception has no handler, an error message is printed, and
your program terminates.

• In a method that is ready to handle a particular exception type,

 place the statements that can cause the exception inside a
try block

 place the handler inside a catch clause

• If you call a method that throw a checked exception, you must
either handle it or pass it on.

• Catching Multiple Exception

 Use a separate catch clause for each type

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.17

1. Exception Handling Syntax
try
{
// Code which might throw an exception
// ... }
catch(FileNotFoundException x)
//catch(<exceptiontype><parameter1>)

{
// code to handle a FileNotFound exception }
catch(IOException x)
{
// code to handle any other I/O exceptions }
catch(Exception x)
{
// Code to catch any other type of exception
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.18

1. Exception Handling Syntax
• Displaying exception description:- Throwable overrides

the toString() method (defined by Object) so that it
returns a string containing a description of the exception

catch (ArithmeticException e) {

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.19

2. Declaring Checked Exceptions

• Majority of the checked exceptions occur when dealing
with input and output.

• Add a throws specifier to a method that can throw a
checked exception.

public void FileInputStream(String name) throws
FileNotFoundException

• Multiple exceptions can be separated by commas.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.20

• When to use throws

 Call a method that throws a checked exception, for example,
the FileInputStream constructor

 Detect an error and throw a checked exception, with the throw
statement

 Make a programming error, such as a[-1] = 0 that gives rise to
an unchecked exception such as
ArrayIndexOutOfBoundsException.

 An internal error occurs in the virtual machine or runtime
library

• If method fails to faithfully declare all checked exceptions, the
compiler will issue an error message

2. Declaring Checked Exceptions

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.21

• Program can throw an exception explicitly, using the
throw

throw ThrowableInstance;

• The flow of execution stops immediately after the throw
statement; any subsequent statements are not
executed.

• The nearest enclosing try block is inspected to see if it
has a catch statement that matches the type of
exception.

3. Throwing Exceptions

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.22

• Throwing an Exception

 Find an appropriate exception class

 Make an object of that class

 Throw it.

3. Throwing Exceptions

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.23

finally Clause
• The finally construct is used to handle a situation in which

some action has to be taken whether or not an exception is
thrown.

BufferedReader in= null;
try {

in = new BufferedReader(new
FileReader(filename));

purse.read(in);
}
finally {

if (in != null)
in.close();

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.24

finally Clause..

• finally creates a block of code that will be executed after a
try/catch block has completed and before the code following the
try/catch block.

• Use the finally clause whenever you need to do code cleanup

• The finally block will execute whether or not an exception is
thrown.

• The code in the finally block is executed whenever the try block is
exited through any of the next three ways.

1. The code throws no exception

2. The code throws an exception

3. The code throws an exception that is not caught in any catch
clause

• Finally will not be executed always!

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.25

Custom Exceptions

• Java provides us facility to create our own exceptions
which are basically derived classes of Exception.

• If none of the standard types describes your particular
error condition well enough, then design your own
exception class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.26

Multi Threading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.27

• Multithreading is a specialized form of multitasking.

• There are two distinct types of multitasking:
Process based

Thread-based.

• A process is, in essence, a program that is executing.

• Thus, process-based multitasking is the feature that allows
your computer to run two or more programs concurrently.

• For example, process-based multitasking enables you to
run the Java compiler at the same time that you are using a
text editor.

Multithreading

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.28

• In a thread-based multitasking environment, the thread is
the smallest unit of dispatchable code. This means that a
single program can perform two or more tasks
simultaneously.

• For instance, a text editor can format text at the same time
that it is printing, as long as these two actions are being
performed by two separate threads.

• Process-based multitasking deals with the “big picture,”
and thread-based multitasking handles the details.

• Multitasking threads require less overhead than multitasking
processes.

Multithreading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.29

• A multithreaded program contains two or more parts that
can run concurrently.

• Each part of such a program is called a thread, and each
thread defines a separate path of execution.

• Each thread is a statically ordered sequence of instructions.

• Threads are being extensively used express concurrency
on both single and multiprocessors machines.

• Default thread of the application- main thread.

Multithreading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.30

Multithreading is similar to multi-processing
A multi-processing Operating System can run several processes at
the same time

Each process has its own address/memory space
The OS's scheduler decides when each process is executed

Only one process is actually executing at any given time. However, the
system appears to be running several programs simultaneously

Separate processes to not have access to each other's memory
space

Many OSes have a shared memory system so that processes can share memory
space

• In a multithreaded application, there are several points of execution
within the same memory space.
• Each point of execution is called a thread
• Threads share access to memory

Multithreading

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.3131

A single threaded program

class ABC

{

….
public void main(..)

{

…

..

}

}

begin

body

end

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.32

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.33

A Multithreaded Program

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.34

In a single threaded application, one thread of execution
must do everything

If an application has several tasks to perform, those tasks will be performed
when the thread can get to them.
A single task which requires a lot of processing can make the entire application
appear to be "sluggish" or unresponsive.

• In a multithreaded application, each task can be performed
by a separate thread

If one thread is executing a long process, it does not make the entire application
wait for it to finish.

• If a multithreaded application is being executed on a
system that has multiple processors, the OS may execute
separate threads simultaneously on separate processors.

Why use Multithreading?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.35

Any kind of application which has distinct tasks
which can be performed independently

Any application with a GUI.
Threads dedicated to the GUI can delegate the processing of
user requests to other threads.
The GUI remains responsive to the user even when the user's
requests are being processed

Any application which requires asynchronous response
Network based applications are ideally suited to multithreading.

Data can arrive from the network at any time.
In a single threaded system, data is queued until the thread can
read the data
In a multithreaded system, a thread can be dedicated to
listening for data on the network port
When data arrives, the thread reads it immediately and

What Kind of Applications Use Multithreading?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.3636

Server
Threads

Server ProcessClient 1 Process

Client 2 Process

Multithreaded Server: For Serving Multiple Clients
Concurrently

 Internet

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.3737

Printing ThreadPrinting Thread

Editing ThreadEditing Thread

Modern Applications need Threads (ex1):
Editing and Printing documents in background.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.3838

Multithreaded/Parallel File Copy

reader()

{

- - - - - - - - -
-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -
-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]

buff[1]

Parallel Synchronized ThreadsParallel Synchronized Threads

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.3939

Code-Granularity
Code Item
Large grain
(task level)
Program

Medium grain
(control level)
Function (thread)

Fine grain
(data level)
Loop (Compiler)

Very fine grain
(multiple issue)
With hardware

Code-Granularity
Code Item
Large grain
(task level)
Program

Medium grain
(control level)
Function (thread)

Fine grain
(data level)
Loop (Compiler)

Very fine grain
(multiple issue)
With hardware

Task i-l Task i Task i+1

func1 ()
{
....
....
}

func2 ()
{
....
....
}

func3 ()
{
....
....
}

a (0) =..
b (0) =..

a (1)=..
b (1)=..

a (2)=..
b (2)=..

+ x LoadLoad

Sockets/
PVM/MPI

Threads

Compilers

CPU

Levels of Parallelism

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.40

Each thread is given its own "context"
A thread's context includes virtual registers and its own calling stack

• The "scheduler" decides which thread executes at any given time
The VM may use its own scheduler
Since many OSes now directly support multithreading, the VM may use
the system's scheduler for scheduling threads

• The scheduler maintains a list of ready threads (the run queue) and a list of
threads waiting for input (the wait queue)

Each thread has a priority. The scheduler typically schedules between the
highest priority threads in the run queue

Note: the programmer cannot make assumptions about how threads are
going to be scheduled. Typically, threads will be executed differently on
different platforms.

How does it all work?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.41

Thread States

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.42

Thread Creation

Threads can be created by using two mechanisms :
1. Extending the Thread class
• We create a class that extends

the java.lang.Thread class.
• This class overrides the run() method available in the

Thread class. A thread begins its life inside run()
method.

• We create an object of our new class and call start()
method to start the execution of a thread.

• Start() invokes the run() method on the Thread object.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.43

Thread Creation

2. Implementing the Runnable Interface
• We create a new class which implements

java.lang.Runnable interface and override run()
method.

• Then we instantiate a Thread object and call start()
method on this object.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.44

Thread Class vs. Runnable

1. If we extend the Thread class, our class cannot extend
any other class because Java doesn’t support multiple
inheritance. But, if we implement the Runnable interface,
our class can still extend other base classes.

2. We can achieve basic functionality of a thread by
extending Thread class because it provides some inbuilt
methods like yield(), interrupt() etc. that are not available in
Runnable interface.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.45

Polling

• The process of testing a condition repeatedly till it
becomes true is known as polling.

• Polling is usually implemented with the help of loops to
check whether a particular condition is true or not. If it is
true, certain action is taken. This waste many CPU
cycles and makes the implementation inefficient.
For example, in a classic queuing problem where one
thread is producing data and other is consuming it.

• Java’s Solution:-
 To avoid polling, Java uses three methods, namely, wait(),

notify() and notifyAll(). All these methods belong to object
class as final so that all classes have them. They must be used
within a synchronized block only.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.46

Polling Solutions

• wait()-It tells the calling thread to give up the lock and
go to sleep until some other thread enters the same
monitor and calls notify().

• notify()-It wakes up one single thread that called wait()
on the same object. It should be noted that calling
notify() does not actually give up a lock on a resource.

• notifyAll()-It wakes up all the threads that called wait()
on the same object.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.47

Thread Priority

• In Java, each thread is assigned priority, which affects
the order in which it is scheduled for running. The
threads so far had same default priority
(NORM_PRIORITY) and they are served using FCFS
policy.
 Java allows users to change priority:

ThreadName.setPriority(intNumber)

MIN_PRIORITY = 1

NORM_PRIORITY=5

MAX_PRIORITY=10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.48

Context Switching

• Thread priorities are integers that specify the relative
priority of one thread to another.

• As an absolute value, a priority is meaningless; a
higher-priority thread doesn’t run any faster than a
lower-priority thread if it is the only thread running.

• Instead, a thread’s priority is used to decide when to
switch from one running thread to the next.

• This is called a context switch.
• Rules:-

 A thread can voluntarily relinquish control.

 A thread can be preempted by a higher-priority thread.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.49

Thread Priority Example
class A extends Thread
{

public void run()
{

System.out.println("Thread A started");
for(int i=1;i<=4;i++)

{
System.out.println("\t From ThreadA: i= "+i);

}
System.out.println("Exit from A");

}
}
class B extends Thread
{

public void run()
{

System.out.println("Thread B started");
for(int j=1;j<=4;j++)

{
System.out.println("\t From ThreadB: j= "+j);

}
System.out.println("Exit from B");

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.50

Thread Priority Example
class C extends Thread
{

public void run()
{

System.out.println("Thread C started");
for(int k=1;k<=4;k++)

{
System.out.println("\t From ThreadC: k= "+k);

}
System.out.println("Exit from C");

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.51

Thread Priority Example
class ThreadPriority
{

public static void main(String args[])
{

A threadA=new A();
B threadB=new B();
C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);
threadA.setPriority(Thread.MIN_PRIORITY);
System.out.println("Started Thread A");
threadA.start();

System.out.println("Started Thread B");
threadB.start();

System.out.println("Started Thread C");
threadC.start();
System.out.println("End of main thread");

}
}

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.52

yield() basically means that the thread is not doing
anything particularly important and if any other threads or
processes need to be run, they should run. Otherwise, the
current thread will continue to run.

Thread.yield();

sleep(): This method causes the currently executing
thread to sleep for the specified number of milliseconds,
subject to the precision and accuracy of system timers
and schedulers.

Thread.sleep(1000);

Yield() and Sleep()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.53

Concurrency

• An object in a program can be changed by more than
one thread

• Q: Is the order of changes that were preformed on the
object important?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.54

Race Condition

• A race condition – the outcome of a program is affected
by the order in which the program's threads are
allocated CPU time

• Two threads are simultaneously modifying a single
object

• Both threads “race” to store their value

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.55

Race Condition Example

Put green pieces Put red piecesHow can we have
alternating colors?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.56

Synchronization

• When two or more threads need access to a shared
resource, they need some way to ensure that the
resource will be used by only one thread at a time.

• The process by which this is achieved is called
synchronization.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.57

Monitors

• Key to synchronization is the concept of the monitor
(also called a semaphore).

• A monitor is an object that is used as a mutually
exclusive lock, or mutex.

• Only one thread can own a monitor at a given time.
When a thread acquires a lock, it is said to have entered
the monitor. All other threads attempting to enter the
locked monitor will be suspended until the first thread
exits the monitor.

• These other threads are said to be waiting for the
monitor.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.58

Synchronization in Java

• To enter an object’s monitor, just call a method that has
been modified with the synchronized keyword.

• While a thread is inside a synchronized method, all
other threads that try to call it (or any other
synchronized method) on the same instance have to
wait.
 Therefore, it is within synchronized methods that critical data

is updated

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.59

Synchronized Statements

• A monitor can be assigned to a block:

synchronized(object) { some-code }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.60

An Efficient Approach

• We do not always have to synchronize a whole method.

• Sometimes it is preferable to synchronize only part

of a method.

• Java synchronized blocks inside methods makes this

possible.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.61

An Efficient Approach
class Sender

{

public void send(String msg)

{

synchronized(this)

{

System.out.println("Sending\t" +

msg);

try

{

Thread.sleep(1000);

}

catch (Exception e)

{

System.out.println("Thread

interrupted.");

}

System.out.println("\n" + msg

+ "Sent");

}

}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.62

public class SavingsAccount

{

private float balance;

public void withdraw(float anAmount)

{

if (anAmount<0.0)

throw new IllegalArgumentException("Withdraw amount negative");

synchronized(this)

{

if (anAmount<=balance)

balance = balance - anAmount;

}

}

public void deposit(float anAmount)

{

if (anAmount<0.0)

throw new IllegalArgumentException("Deposit amount negative");

synchronized(this)

{

balance = balance + anAmount;

}

}

Block Synchronization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.63

Static Synchronized Methods
• In general, synchronized methods are used to protect

access to resources that are accessed concurrently.

• When a resource that is being accessed concurrently
belongs to each instance of your class, you use a
synchronized instance method; when the resource
belongs to all instances (i.e. when it is in a static
variable) then you use a synchronized static method
to access it.

• Marking a static method as synchronized, associates a
monitor with the class itself.

• The execution of synchronized static methods of the
same class is mutually exclusive.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.64

Deadlocks
• In multitasking, deadlock occurs when two threads have

a circular dependency on a pair of synchronized
objects.

• For example, suppose one thread enters the monitor on
object X and another thread enters the monitor on
object Y. If the thread in X tries to call any synchronized
method on Y, it will block as expected. However, if the
thread in Y, in turn, tries to call any synchronized
method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so
that the first thread could complete

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.65

Deadlocks

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.66

Avoiding Deadlocks
• Avoid Nested Locks : This is the main reason for dead

lock. Dead Lock mainly happens when we give locks to
multiple threads. Avoid giving lock to multiple threads if
we already have given to one.

• Avoid Unnecessary Locks : We should have lock only
those members which are required. Having lock on
unnecessarily can lead to dead lock.

• Using thread join : Dead lock condition appears when
one thread is waiting other to finish. If this condition
occurs we can use Thread.join with maximum time you
think the execution will take.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.67

Livelocks
• A thread often acts in response to the action of another

thread. If the other thread's action is also a response to the
action of another thread, then livelock may result.

• As with deadlock, livelocked threads are unable to make
further progress. However, the threads are not blocked —
they are simply too busy responding to each other to
resume work.

• This is comparable to two people attempting to pass each
other in a corridor: Alphonse moves to his left to let
Gaston pass, while Gaston moves to his right to let
Alphonse pass. Seeing that they are still blocking each
other, Alphone moves to his right, while Gaston moves to
his left

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.68

The Collections Framework

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.69

Collections Framework

• A collection — sometimes called a container — is
simply an object that groups multiple elements into a
single unit.

• Java provides Collection Framework which defines
several classes and interfaces to represent a group of
objects as a single unit.

• The Collections Framework is a sophisticated
hierarchy of interfaces and classes that provide state-
of-the-art technology for managing groups of objects.

• Used to store, retrieve, manipulate, and communicate
aggregate data.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.70

Need for Collections

• Before Collection Framework (or before JDK 1.2)
standard methods for grouping Java objects were array
or Vector or Hashtable.

• All three of these collections had no common
interface.

• All these three have different methods and syntax for
accessing members.

• Java developers decided to come up with a common
interface to deal with the above mentioned problems
and introduced Collection Framework.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.71

The Collections Framework

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.72

Collections Framework

• A collection — sometimes called a container — is
simply an object that groups multiple elements into a
single unit.

• Java provides Collection Framework which defines
several classes and interfaces to represent a group of
objects as a single unit.

• The Collections Framework is a sophisticated
hierarchy of interfaces and classes that provide state-
of-the-art technology for managing groups of objects.

• Used to store, retrieve, manipulate, and communicate
aggregate data.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.73

Need for Collections

• Before Collection Framework (or before JDK 1.2)
standard methods for grouping Java objects were array
or Vector or Hashtable.

• All three of these collections had no common
interface.

• All these three have different methods and syntax for
accessing members.

• Java developers decided to come up with a common
interface to deal with the above mentioned problems
and introduced Collection Framework.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.74

The Collections Framework

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.75

Collections Framework

• A collection — sometimes called a container — is
simply an object that groups multiple elements into a
single unit.

• Java provides Collection Framework which defines
several classes and interfaces to represent a group of
objects as a single unit.

• The Collections Framework is a sophisticated
hierarchy of interfaces and classes that provide state-
of-the-art technology for managing groups of objects.

• Used to store, retrieve, manipulate, and communicate
aggregate data.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.76

The Collections Framework

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.77

Collections Framework

• A collection — sometimes called a container — is
simply an object that groups multiple elements into a
single unit.

• Java provides Collection Framework which defines
several classes and interfaces to represent a group of
objects as a single unit.

• The Collections Framework is a sophisticated
hierarchy of interfaces and classes that provide state-
of-the-art technology for managing groups of objects.

• Used to store, retrieve, manipulate, and communicate
aggregate data.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.78

Need for Collections

• Before Collection Framework (or before JDK 1.2)
standard methods for grouping Java objects were array
or Vector or Hashtable.

• All three of these collections had no common
interface.

• All these three have different methods and syntax for
accessing members.

• Java developers decided to come up with a common
interface to deal with the above mentioned problems
and introduced Collection Framework.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.79

Collections- Higher Ups!

• Consistent API

• Reduces programming effort

• Increases program speed and quality

• Allows interoperability among unrelated APIs

• Reduces effort to learn and to use new APIs

• Reduces effort to design new APIs

• Fosters software reuse

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.80

The Collections Framework

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof. BVICAM U2.81

The Collections Framework

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.82

Collections Framework

• A collection — sometimes called a container — is
simply an object that groups multiple elements into a
single unit.

• Java provides Collection Framework which defines
several classes and interfaces to represent a group of
objects as a single unit.

• The Collections Framework is a sophisticated
hierarchy of interfaces and classes that provide state-
of-the-art technology for managing groups of objects.

• Used to store, retrieve, manipulate, and communicate
aggregate data.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.83

Need for Collections

• Before Collection Framework (or before JDK 1.2)
standard methods for grouping Java objects were array
or Vector or Hashtable.

• All three of these collections had no common
interface.

• All these three have different methods and syntax for
accessing members.

• Java developers decided to come up with a common
interface to deal with the above mentioned problems
and introduced Collection Framework.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.84

Collections- Higher Ups!

• Consistent API

• Reduces programming effort

• Increases program speed and quality

• Allows interoperability among unrelated APIs

• Reduces effort to learn and to use new APIs

• Reduces effort to design new APIs

• Fosters software reuse

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.85

Types of Collection

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.86

Types of Collection

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.87

Types of Collection

• Java supplies several types of Collection:
 Set: cannot contain duplicate elements, order is not important

 SortedSet: like a Set, but order is important

 List: may contain duplicate elements, order is important

• Java also supplies some “collection-like” things:
 Map: a “dictionary” that associates keys with values, order is not important

 SortedMap: like a Map, but order is important

• While you can get all the details from the Java API, you
are expected to learn (i.e. memorize):
 The signatures of the “most important” methods in each interface

 The most important implementations of each interface

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.88

Collections Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.89

Collections Architecture
Unified architecture for representing and manipulating collections

• Interfaces
Abstract data types that represent collections.

Allow collections to be manipulated independently of the details of
their representation.

• Implementations:
Concrete implementations of the collection interfaces.

Reusable data structures.

• Algorithms:
Methods that perform useful computations, such as searching and

sorting, on objects that implement collection interfaces.

Polymorphic: that is, the same method can be used on many
different implementations of the appropriate collection interface.

In essence, algorithms are reusable functionality.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.90

• The Collection interface is the foundation upon which
the Collections Framework is built because it must be
implemented by any class that defines a collection.

• Collection is a generic interface that has this
declaration:

interface Collection<E>

E specifies the type of objects that the collection will hold

• Collection extends the Iterable interface.

I. Interfaces

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.91

Operations of Collection <E> interface

• The Collection interface specifies (among many other
operations):
 boolean add(E o)
 boolean contains(Object o)
 boolean remove(Object o)
 boolean isEmpty()
 int size()
 Object[] toArray()
 Iterator<E> iterator()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.92

Bulk Operations Collection Interface

• containsAll

 returns true if the target Collection contains all of the elements in the
specified Collection.

• addAll

 adds all of the elements in the specified Collection to the target Collection.

• removeAll

 removes from the target Collection all of its elements that are also
contained in the specified Collection.

• retainAll

 removes from the target Collection all its elements that are not also
contained in the specified Collection. That is, it retains only those elements
in the target Collection that are also contained in the specified Collection.

• Clear

 removes all elements from the Collection.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.93

Traversing Collections

• All collection classes in the Collections Framework have
been retrofitted to implement the Iterable interface,
which means that a collection can be cycled through by
use of the for-each style for loop.

• In the past, cycling through a collection required the use
of an iterator with the programmer manually
constructing the loop.

• Although iterators are still needed for some uses, in
many cases, iterator-based loops can be replaced by
for loops.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.94

Traversing Collections
1. For-each Construct

for (Object o : collection)

System.out.println(o);

2. Iterators

• An object that enables you to traverse through a collection and to
remove elements from the collection selectively, if desired
public interface Iterator<E> {

boolean hasNext();

E next();

void remove(); //optional

}

• The remove method may be called only once per call to next and
throws an exception if this rule is violated.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.95

Iterating Collections
• Two ways to iterate over Collections:
 Iterator

static void loopThrough(Collection col){
for (Iterator <E> iter = col.iterator();iter.hasnext()) {

Object obj=iter.next();
}

}
 For-each

static void loopThrough(Collection col){
for (Object obj: col) {

//access object
} }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.96

The Iterator Interface

• An iterator is an object that will return the elements of a
collection, one at a time

interface Iterator<E>

 boolean hasNext()

Returns true if the iteration has more elements

 E next()

Returns the next element in the iteration

 void remove()

Removes from the underlying collection the last
element returned by the iterator (optional
operation)

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.97

II. Concrete Implementations
concrete implements description
collection

HashSet Set hash table
TreeSet SortedSet balanced binary tree
ArrayList List resizable-array
LinkedList List linked list
Vector List resizable-array
HashMap Map hash table
TreeMap SortedMap balanced binary tree
Hashtable Map hash table

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.98

II. Concrete Implementations
• class HashSet<E> implements Set
• class TreeSet<E> implements SortedSet
• class ArrayList<E> implements List
• class LinkedList<E> implements List
• class Vector<E> implements List

 class Stack<E> extends Vector
 Important methods: push, pop, peek, isEmpty

• class HashMap<K, V> implements Map
• class TreeMap<K, V> implements SortedMap

• All of the above provide a no-argument constructor

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.99

III. Algorithms
• The collections framework also provides polymorphic versions of algorithms

you can run on collections.
 Sorting
 Shuffling
 Routine Data Manipulation

Reverse
Fill copy
etc.

 Searching
Binary Search

 Composition
Frequency
Disjoint

 Finding extreme values
Min
Max

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.100

Collection Implementations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.101

1. List
• The List interface extends Collection and declares the behaviour of a collection

that stores a sequence of elements.

• An ordered collection

• Can have duplicates

• Includes operations for the following
 Positional access

Manipulates elements based on their numerical position in the list
 Search

Searches for a specified object in the list and returns its numerical
position

 Iteration

 Extends Iterator semantics to take advantage of the list's sequential
nature

 Range-view

Performs arbitrary range operations on the list.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.102

The List interface

• A list is an ordered sequence of elements
interface List<E> extends Collection, Iterable

• Some important List methods are:
 void add(int index, E element)
 E remove(int index)
 boolean remove(Object o)
 E set(int index, E element)
 E get(int index)
 int indexOf(Object o)
 int lastIndexOf(Object o)
 ListIterator<E> listIterator()

A ListIterator is like an Iterator, but has, in addition, hasPrevious and
previous methods

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.103

Using Lists

List<Integer> myIntList = new LinkedList<Integer>(); // 1’

myIntList.add(new Integer(0)); //2’

Integer x = myIntList.iterator().next(); // 3’

// Removes the 4-letter words from c

static void expurgate(Collection<String> c) {

for (Iterator<String> i = c.iterator(); i.hasNext();)

if (i.next().length() == 4)

i.remove();

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.104

Randomly shuffling a List

import java.util.*;

public class Shuffle {

public static void main(String[] args) {

List<String> list = Arrays.asList(args);

Collections.shuffle(list);

System.out.println(list);

}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.105

2. Set Interface

• Contains three general-purpose Set implementations
 HashSet, TreeSet, and LinkedHashSet

• Suppose you have a Collection, c, and you want to
create another Collection containing the same elements
but with all duplicates eliminated.

Collection<Type> noDups = new HashSet<Type>(c);

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.106

2. Set Interface

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.107

Using Set
import java.util.*;
public class Test {

public static void main(String[] args) {
Set<String> ss = new LinkedHashSet<String>();
for (int i = 0; i < args.length; i++)
ss.add(args[i]);

Iterator i = ss.iterator();
while (i.hasNext())
System.out.println(i.next());

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.108

3. The SortedSet Interface

• A SortedSet is a Set for which the order of elements is
important

Interface SortedSet<E>
implements Set, Collection, Iterable

• Two of the SortedSet methods are:
 E first()

 E last()

• More interestingly, only Comparable elements can be
added to a SortedSet, and the set’s Iterator will return
these in sorted order

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.109

3. The SortedSet Interface

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.110

4. The HashSet

• HashSet extends AbstractSet and implements the Set
interface. It creates a collection that uses a hash table
for storage. HashSet is a generic class that has this
declaration:

class HashSet<E>

Here, E specifies the type of objects that the set will
hold.

• HashSet does not guarantee the order of its elements

• For sorted storage TreeSet, is a better choice.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.111

5. The TreeSet

• TreeSet extends AbstractSet and implements the
NavigableSet interface.

class TreeSet<E>

Here, E specifies the type of objects that the set will
hold

• It creates a collection that uses a tree for storage.

• Objects are stored in sorted, ascending order

• Access and retrieval times are quite fast, which makes
TreeSet an excellent choice when storing large
amounts of sorted information that must be found
quickly.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.112

6. The Map interface

• A map is a data structure for associating keys and values

Interface Map<K,V>
• The two most important methods are:

 V put(K key, V value) // adds a key-value pair to the map

 V get(Object key) // given a key, looks up the associated value

• Some other important methods are:

 Set<K> keySet()
 Returns a set view of the keys contained in this map.

 Collection<V> values()
Returns a collection view of the values contained in this

map

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.113

6. The Map interface

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.114

Using Map
Map map = new HashMap(); // instantiate a concrete map
// ...
map.put(key, val); // insert a key-value pair
// ...
// get the value associated with key
Object val = map.get(key);
map.remove(key); // remove a key-value pair
// ...
if (map.containsValue(val)) { ... }
if (map.containsKey(key)) { ... }
Set keys = map.keySet(); // get the set of keys
// iterate through the set of keys
Iterator iter = keys.iterator();
while (iter.hasNext()) {
Key key = (Key) iter.next();
// ...

}

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.115

Using Map
public class Test {

public static void main(String[] args)
{

//map to hold student grades
Map<String, Integer> theMap = new HashMap<String, Integer>();
theMap.put("Korth, Evan", 100);
theMap.put("Plant, Robert", 90);
theMap.put("Coyne, Wayne", 92);
theMap.put("Franti, Michael", 98);
theMap.put("Lennon, John", 88);
System.out.println(theMap);
System.out.println("--------------------------------------");
System.out.println(theMap.get("Korth, Evan"));
System.out.println(theMap.get("Franti, Michael"));

}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.116

import java.util.*;

public class Freq {

public static void main(String[] args)

{

Map<String, Integer> m = new HashMap<String, Integer>();

// Initialize frequency table from command line

for (String a : args) {

Integer freq = m.get(a);

m.put(a, (freq == null) ? 1 : freq + 1);

}

System.out.println(m.size() + " distinct words:");

System.out.println(m); } }

Using Map

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.117

7. The SortedMap Interface

• A sorted map is a map that keeps the keys in sorted order

• Interface SortedMap<K,V>

• Two of the SortedMap methods are:

 K firstKey()

 K lastKey()

• More interestingly, only Comparable elements can be used as
keys in a SortedMap, and the method Set<K> keySet() will return
a set of keys whose iterator will return them sorted order

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.118

8. The HashMap

• The HashMap class extends AbstractMap and implements the
Map interface. It uses a hash table to store the map.

• This allows the execution time of get() and put() to remain
constant even for large sets.

• HashMap is a generic class that has this declaration:

class HashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of
values.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.119

9. Properties Collection

• Properties is a subclass of Hashtable. It is used to maintain lists
of values in which the key is a String and the value is also a
String.

• Used in the type of object returned by System.getProperties()
when obtaining environmental values

• Used to store configurations.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.120

Collections at a glance…

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.121

NETWORKING

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.122

Client/Server Computing

• Communication over the network often occurs between
a client and a server

• A client connects to a server and then sends and
receives messages

• A server waits for connection requests from clients,
accepts them, and then responds to their messages

• TCP/IP: abstract layer that simplifies the above
activities

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.123Networking

Hosts, Ports, and Sockets
• Host – a computer uniquely identified by hostname and/or IP

Address
 hostname: a String name (e.g., aegis.ateneo.net)
 IP address: a set of 4 bytes (e.g., 10.0.1.34)
 Type ipconfig or winipcfg to check your address

• Port – a number that specifies the type of connection you want
to make
 e.g., port 80 is for HTTP (web protocol),

port 23 is for Telnet (logging in to a UNIX account), etc.
 each server can listen to many ports
 each port can accommodate many clients

• Socket – object that encapsulates the communication process
 hides the details of how things work

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.124

Types of Transfer
Networks typically provide two types of transfer

 Connection-oriented
often reliable
stream based
Point to point – like phone call

 Connectionless
often unreliable
datagram based
Sends independent packets of data
Order of delivery is not important
Delivery not guaranteed

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.125

Types of Transfer

 TCP

Transmission Control Protocol

Connection based protocol that provides a

reliable flow of data

 UDP

User Datagram Protocol

Sends independent packets of data with no guarantee of
arrival

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.126

Networking in Java

• java.net package

 import java.net.*;

• Most important classes

 InetAddress

 Connection-oriented Transfer

Socket

ServerSocket

 Connection-less Transfer
DatagramPacket
DatagramSocket

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.127

InetAddress

• The InetAddress Class is used to encapsulate both the
numerical IP Address and domain name for that address.

• Has no visible constructors.

Then How To Instantiate?

Factory Methods

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.128

Common Factory Methods

• static InetAddress getLocalhost() throws
UnknownHostException

• static InetAddress getByName(String hostname) throws
UnknownHostException

• static InetAddress[] getAllByName(String hostname)
throws UnknownHostException

• Static InetAddress getByAddress(byte[] addr) throws
UnknownHostException

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.129

Checking IP Address
HostInfo.java
import java.net.*;
import java.io.*;
import java.util.*;
public class HostInfo {
public static void main(String args[]) {
InetAddress ipAddr;
try {
ipAddr = InetAddress.getLocalHost();
System.out.println("This is "+ipAddr);
}
catch (UnknownHostException e) {
System.out.println("Unknown host");
}
}}

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.130

Socket Programming with TCP

Processes communicating through TCP sockets

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.131

Socket

• A socket represents a TCP connection

• Reliable

• Stream oriented – Uses java.io classes

• Classes:

 ServerSocket

Passive, simply waits for client connections

 Socket

Active, will initiate connection with server

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.132

Sockets for server and client
• Server

 Welcoming socket
Welcomes some initial contact from a client.

 Connection socket
Is created at initial contact of client.
New socket that is dedicated to the particular client.

• Client
 Client socket

Initiate a TCP connection to the server by creating a socket
object.

Specify the address of the server process, namely, the IP
address of the server and the port number of the process.

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.133

Class Socket
• Constructor takes the host and port that the client wants to connect to

 public Socket()
 public Socket(InetAddress address, int port);
 public Socket(String host, int port);
 public void close();
 public InetAddress getInetAddress();
 public int getLocalPort();
 public int getPort();
 public String toString();
 public InputStream getInputStream();
 public OutputStream getOutputStream();

• Given these Streams, you can send/receive data
• Writing to OutputStream sends the data to the other host
• To read the data, the other host must read from the InputStream
• You can/should chain other “filter” streams to these before using them – just

like you did for files (e.g., you can use BufferedReader, etc.)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.134

Class ServerSocket
• it is-NOT-a Socket

 doesn’t extend Socket, and doesn’t have the same methods
• actually, it creates sockets, in response to a client connection
• maybe better called “ConnectionListener” or “SocketServer”
• Constructor takes port number that the server wishes to listen to
• Call the accept() method to accept a client

 Thread that calls accept() blocks (waits or “sleeps”) until a client
connects

 Thread continues after client connects. The accept() method
then returns a Socket object connected to the client

• public ServerSocket(int port);
• public Socket accept();
• public void close();
• public InetAddress getInetAddress();
• public int getLocalPort();
• public String toString();

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.135
Slide 135Networking

The Socket class
• Constructor takes the host and port that the client wants to

connect to
• Useful Socket methods

 InputStream getInputStream()
 OutputStream getOutputStream()

• Given these Streams, you can send/receive data
 Writing to OutputStream sends the data to the other host
 To read the data, the other host must read from the InputStream
 You can/should chain other “filter” streams to these before using them –

just like you did for files (e.g., you can use BufferedReader, etc.)

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.136Networking

The ServerSocket class

• Misnomer

 it is-NOT-a Socket

doesn’t extend Socket, and doesn’t have the same
methods

 actually, it creates sockets, in response to a client connection

 maybe better called “ConnectionListener” or “SocketServer”

• Constructor takes port number that the server wishes to listen to

• Call the accept() method to accept a client

 Thread that calls accept() blocks (waits or “sleeps”) until a
client connects

 Thread continues after client connects. The accept() method
then returns a Socket object connected to the client

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.137

Sockets

Client socket, welcoming socket and connection socket

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.138

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:

welcomeSocket =
ServerSocket()

create socket,
connect to hostid, port=x

clientSocket =
Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.139

TCPClient.java
import java.io.*;
import java.net.*;
Import java.util.*;

class TCPClient {
public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

Scanner inFromUser =
new Scanner(System.in);

Socket clientSocket = new Socket("hostname", 6789);

PrintWriter outToServer =
new PrintWriter(clientSocket.getOutputStream(),true);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.140

TCPClient.java
Scanner inFromServer =

new Scanner(clientSocket.getInputStream());

sentence = inFromUser.nextLine();

outToServer.println(sentence);

modifiedSentence = inFromServer.nextLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.141

TCPServer.java
import java.io.*;
import java.net.*;
Import java.util.*;
class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

Scanner inFromClient = new Scanner(
connectionSocket.getInputStream());

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.142

TCPServer.java
PrintWriter outToClient =

new PrintWriter(connectionSocket.getOutputStream(), true);

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);

}
}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.143

Socket Programming with UDP
• UDP

 Connectionless and unreliable service.
 There isn’t an initial handshaking phase.
 Doesn’t have a pipe.
 transmitted data may be received out of order, or lost

• Socket Programming with UDP
 No need for a welcoming socket.
 No streams are attached to the sockets.
 the sending hosts creates “packets” by attaching the IP

destination address and port number to each batch of bytes.
 The receiving process must unravel to received packet to

obtain the packet’s information bytes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.144

Datagram Packet

• Represents a datagram packet

• DatagramPacket(byte[] buf, int length, InetAddress address,
int port)

• DatagramPacket(byte[] buf, int length)

• InetAddress getAddress()

• byte[] getData();

• int getLength();

• int getPort();

• void setAddress(InetAddress iaddr);

• void setData(byte[] ibuf);

• void setLength(int ilength);

• void setPort(int iport);

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.145

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.146

JAVA UDP Sockets
• In Package java.net

 java.net.DatagramSocket
A socket for sending and receiving datagram packets.
Constructor and Methods

DatagramSocket(int port): Constructs a datagram socket
and binds it to the specified port on the local host
machine.
void receive(DatagramPacket p)
void send(DatagramPacket p)
void close()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.147

UDPClient.java
import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

Scanner inFromUser =
new Scanner(System.in);

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.nextLine();

sendData = sentence.getBytes();

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.148

UDPClient.java
DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length,
IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);

clientSocket.close();

}
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.149

UDPServer.java
import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

String sentence = new String(receivePacket.getData());

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.150

UDPServer.java
InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, port);

serverSocket.send(sendPacket);

}
}

}

MCA-109, Java Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U2 51

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.151Networking

Handling Multiple Connections

• Use Threads
• Main Thread

 Have a loop that continuously calls accept()
 Create and start a new “connection thread” whenever accept()

returns a socket

• Connection Thread
 Thread for talking with 1 client (only)
 read, write client via socket’s input and output streams
 may have a loop, reading “requests” from client and

responding

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Associate Prof BVICAM U2.152

Multiple Clients
myserver

s

s

port
8888

ss
main
threadconnection

thread

while (true)

{

Socket s = ss.accept();

CThread ct = new CThread(s);

ct.start();

}

public void run()

{

// get input streams

// read/write client

// loop

}

client

s

s

connection
thread

client

s

s

connection
thread

client

Notes:
 main thread just

accepts
 create and start 1 new

thread per client

