Design and Analysis of Algorithms (MCA-201)

Algorithm Analysis
and
Design

Bharati Vidyapeeth's Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

1. Proj
2. Disc
3. Data Structures

amming Skills
Structures

COURSE OUTCOMES (COs):
After completion of this course, the learners will be able to:-

PRE-REQUISITES:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by Dr. Saumya Bansal

co# oftheCO - BT Level | Mapping to PO # |
CO1 | Demonstrate P and NP complexity classes of the BTL2 PO1, PO2, PO3
problem
CO2 | Apply the concepts of asymptotic notations to BTL4 PO1, PO2, PO3,
analyze the complexities of various algorithms. POA
CO3 | Analyze and evaluate the searching, sorting and BTLS PO1, PO2, PO3,
tree-based algorithms. PO4, POS
CO4 | Design _ efficient solutions using various BTL6 PO1, PO2, PO3
algorithms for given problems PO4, POS, PO6,
i PO10
COS5 | Develop innovative solutions for real-world BTL6 PO1, PO2, PO3,
problems using different paradigms. PO4, POS5, PO6,
PO7, PO9, PO10,

¢ Divide and Conquer Paradigm: Problem Solving, Comparative Analysis of
different Sorting and Searching Techniques, Strassen’s Matrix Multiplication
Method.

* Sorting in linear time: Counting Sort, Bucket Sort and Radix Sort.

e String Matching Concept: Naive String-Matching Algorithm, String Matching
with Finite Automata, Knuth Morris Pratt Algorithm, The Rabin-Karp Algorithm.

* Red Black Trees, Disjoint Set and their Implementation, Medians and Order
Statistics.

¢ No. of Hours: 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal Ul.l

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi- Saumya Bansal

Divide and Conquer Paradigm

» Divide and Conquer is a recursive problem-solving approach which
break a problem into smaller subproblems, recursively solve the
subproblems, and finally combines the solutions to the subproblems to
solve the original problem.

* There are three parts of Divide and Conquer (DAQ) algorithms.

= Divide the problem into a number of subproblems that are smaller instances of the
same problem.

= Conquer the subproblems by solving them recursively

= Combine the solutions to the subproblems into the solution for the original problem.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Divide and Conquer Paradigm

+ Advantages:
= Solving difficult problems
= Algorithm efficiency
= Parallelism
= Memory access

+ Disadvantage:
= Slow because of using recursion.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-3 b

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal ul.2

Design and Analysis of Algorithms (MCA-201)

Divide and Conquer: Binary Sea

e Example:

= Binary search:
Recurrence Relation

T(n)=T(n/2) +1

int binarySearch(intare(], int 1, int v, int x)

if(r>=1
int mid =1+ (r- 112

if (arr{mid] == x)
return mid;

if (arrimid] > x)
return binarySeareh(arr, 1, mid-1, x);

return binarySearchiarr, mid+1, r, x);

H

return -1

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi- Saumya Bansal

Divide and Conquer: Merge Sort

« The merge sort is sorting techniques which uses the merging technique of
two arrays.
« The array is divided into equal half until single the single element and then it
is combined with the merging technique.
« It uses divide and conquer paradigm
= Divide: Divide the array into two equal subarray, each having half of the
size of the initial array.
= Conquer: Sort each of the two subarray until single element, i.e. size of
the sub-array becomes 1.
= Combine: Merge the two sorted subarray and combine into a single
sorted list.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Divide and Conquer: Merge Sort

« Algorithm:
MergeSort(A, Ib, ub)
{ if(lb<ub Recurrence Relation:
if(lb<ub) T(n)=2T(n/2)+O(n)

Mid=(Ib+ub)/2
MergeSort(A,lb,Mid)
MergeSort(A,Mid+1,ub)
Merge(A, Ib, Mid, ub)

}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-3 b

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal Ul.3

Design and Analysis of Algorithms (MCA-201)

Divide and Con r: Merge Sort

void merge(int arr[], int |, int m, int r) i=0j=0k=1; while (i <nl)
{ while (i <nl&&j<n2) {
inti, j, k; { arr[k] = L[i];
. _ . if (L[i] <= R[]) { i++;
::1 :; : 'r“ }r:-+ L arr[k] = L[i]; K+,
-0 i+ }
int L[n1], R[n2]; } while (j < n2)
else { {
for (i = 0; i <ni; i++) arr[k] = R[; arr[k] = R[;
o s j++; 4
L[.|] = ar.r[l + |],. } ks
for (j = 0; j <n2; j++) . }
R[j] =arr[m + 1 +]; } }

© Bharati Vidyapeeth's Institute of Computer Applications and Management, Ney

Divide and Conquer: Merge Sort

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal UlL4

Design and Analysis of Algorithms (MCA-201)

Divide and Conquer: Merge Sort

Time Complexity:

= Best Case: O(nlogn)

= Average Case: O(nlogn)

= Worst Case: O(nlogn)

Space Complexity:

= space=0(n)

v’ Recursion stack: O(logn)

v' Merge: O(n)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi- Saumya Bansal

Divide and Conquer: Quick Sort

The quick sort algorithm divides the array into two subarray based on the
pivot element.

The elements of left subarray is less than of pivot element and the element
of right subarray is greater than the pivot element.

Quick sort is based on the Divide and Conquer Paradigm

= Divide: The array is divided into two subarray

= Conquer: Sort each of the subarray recursively

= Combine: No combination stage. Once the conquer step done, the sorting
is done

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Divide and Conquer: Quick Sort

[o]7]w][s 1] 6 [15] right<pivot; increment right pointer

£ & i3

‘ 9 ‘ ; ‘ 10 ‘ 5 ‘ 6 ‘ 5 ‘ 1; ‘ right>pi_vot; st_op increment, start

T T T comparison with left

[o]7]w]s]1.]6[15] leftopivot; decrement left pointer

4. 2 B

‘ 9 ‘ ’ ‘ 10 ‘ 5 ‘ 16 ‘ 6 ‘ 15 ‘ left<pivot; stop; now right<left; Swap

2. e ' and increment left and decrement
right pointer after swapping

‘9‘7‘6‘5‘16‘10‘15‘

3 3

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-3 b

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal ulis

Design and Analysis of Algorithms (MCA-201)

Divide and Conquer: Quick Sort

‘ 9 ‘ 7 ‘ 6 ‘ 5 ‘ 16 ‘ 10 ‘ 15 ‘ right<pivot; increment right pointer

Pivot oht fere

right>pivot; stop increment, start

‘ 9 ‘ 7 ‘ 6 ‘ 5 ‘ 16 ‘ 10 ‘ 15‘ comparison with left
S A
B
‘ ° ‘ 7 ‘ 5 ‘ 5 ‘ 6 ‘ 0 ‘ 15‘ left>pivot; decrement left pointer

Pivot Bt gt

‘5‘7‘6‘9‘16‘10‘15‘

now left<right; Swap left element
with pivot element

pivot

element < pivot element > pivot

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Divide and Con r: Quick Sort

« Algorithm:
QuickSort(A, b, ub) Recurrence Relation:
{ Best Case: T(n)=2T(n/2)+O(n)
if(lb<ub)
{

. . » Recurrence Relation:
pivot_index=partition(A,lb,ub); Worst Case: T(n)=T(n-1)+6(n)
QuickSort(A,Ib,pivot_index-1);

QuickSort(A,pivot_index + 1, ub);
}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Divide and Con r: Quick Sort

« Algorithm:
int partition(A, Ib, ub) while (arr[j] > pivot)
{ -

pivot = arr[Ib]; I

iZubo1 =) _

while(i<j)) swap arr[i++] and arr[j++]
while (arr[i] < pivot) f;’jfné}”[j] and arr{Ib])

i++; }

}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal UL.6

Design and Analysis of Algorithms (MCA-201)

Divide and Con r: Quick Sort

¢ Time Complexity:

= Best Case: O(nlogn)

= Average Case: O(nlogn)

= Worst Case: O(n?) Why? (refer worst case recurrence relation)

¢ Space Complexity:

= space=0(logn)

v’ Recursion stack: O(logn)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Divide and Conquer: Strassen’s Algorithm

¢ Basic Matrix Multiplication

= Suppose we have two 2X2 matrices, A and B and C=A*B then

. afa b _[e f] _asn [k L
a4] and B—[g p| thenc=ate[*]
k=ae + bg
|=af + bh Total 8 Multiplications and 4 additions
m= ce + dg
n=cf +dh

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Divide and Conquer: Strassen’s Algorithm

¢ Basic Matrix Multiplication

MatrixMultiplication (A, B, C) // A=R1XC1 B=R2XC2
fori=1toR1do
forj=1to C2do
Clij=0
fork=1to Cldo
Cli.j] = C[i,j] + Ali.K] x Blk,j]

Time Complexity=0(n3)
/lassume all integer additions and multiplications takes O(1)//

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal UL7

Design and Analysis of Algorithms (MCA-201)

Divide and Conquer: Strassen’s Algorithm

e Strassen showed that 2X2 matrix multiplication can be accomplished in 7
multiplication and 18 subtractions/additions

= Suppose we have two 2X2 matrices, A and B and C=A*B then

- A% P] and B=[; ﬁ then c=a%[1]
pl=a(f-h) p5=(a+d)(e+h) k=p5+p4-p2+p6
p2=(a+b)h p6=(b-d)(g+h) I=p1+p2
p3=(c+d)e p7=(a-c)(e+f) m=p3+p4
p4=d(g-e) n=p1+p5-p3-p7

Divide and Conquer: Strassen’s Algorithm

a b

. A=[C o] and B=[; ﬂ thenC:A*B:[:l Tll]

k=p5+p4-p2+p6
=(a+d)(e+h)+d(g-e)-(a+b)h+(b-d)(g+h)

In Normal multiplication:

k= ae + bg
:ae+ﬁﬁ+;zt€+dh+9{;-d/e-¢{ﬁ-t)ﬁ+bg+ly{-9f’g-dh I= af + bh
=ae+bg m= ce + dg

n=cf + dh

In similar manner, we can check the value of I, mand n

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Divide and Conquer: Strassen’s Algorithm

void matmul(int A[], int B[], int R[], int n)
{

if (n==1){
R+=A*B;
}

else

matmul(A, B, R, n/4);

matmul(A, B+(n/4), R+(n/4), n/4);
matmul(A+2*(n/4), B, R+2*(n/4), n/4);
matmul(A+2*(n/4), B+(n/4), R+3*(n/4), n/4);
matmul(A+(n/4), B+2*(n/4), R, n/4);
matmul(A+(n/4), B+3*(n/4), R+(n/4), n/4);
matmul(A+3*(n/4), B+2*(n/4), R+2*(n/4), n/4);
matmul(A+3*(n/4), B+3*(n/4), R+3*(n/4), n/4);
}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal uLs8

Design and Analysis of Algorithms (MCA-201)

Divide and Conquer: Strassen’s Algorithm

¢ Recurrence relation: T(n)=7T(n/2)+0(n?)

* Time Complexity: O(n?#%)

The constants used in Strassen’s method are high and for a typical application

Naive method works better.

For Sparse matrices, there are better methods especially designed for them.
The submatrices in recursion take extra space.

Strassen’s Matrix multiplication can be performed only on square matrices
where n is a power of 2. Order of both of the matrices should be n x n

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi- Saumya Bansal

Linear Time Sorting Algorithms

= Counting Sort,

= Radix Sort, and

= Bucket Sort.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Linear Time Sorting : Counting Sort

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-3 b

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal UL.9

Design and Analysis of Algorithms (MCA-201)

Thank You

Bharati Vidyapeeth's Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.10

