Subject: Discrete Mathematics

Paper Code: MCA-105

END TERM EXAMINATION

FIRST SEMESTER [MCA] NOVEMBER-DECEMBER 2018

Time: 3 Hours Maximu	ım Marks: 75
Note: Attempt five questions in all including Q.No1 which is compulsory. Select one question from each unit.	
 Q1 (a) Let Z⁺ be set of +ve integers. Let R be a relation define follows aRb⇔ a divides b. Give the type of relation R. (b) Find the minimum number of student in a class so that two born on the same day. (c) Prove that p → (p ∨ q) is a tautology. (d) Let D₁₀₅ be the set of all divisors of 105. Draw a Hasse diagram of the same day. 	vo of them are
D ₁₀₅ . (e) Find the solution of recurrence relation $a_n=3a_{n-1}+1$ where $a_0=1$ (f) What are the applications of number theory in computer scient (g) If the permutations of the elements of $\{1,2,3,4,5\}$ are given by $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$ $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$ then find $\alpha\beta$. (h) What is semi group and how is it different from a subgroup? (i) What is the difference between path and circuit? When a graph Hamiltonian?	ice?
What are bipartite graphs? Is cycle -C6 bipartite?	(2.5x10=25)
UNIT-I	
Q2 (a) Let R be a relation on the set of real numbers such that aR integer. Show that R is an equivalence relation.(b) Find the number of integers between 1 and 100 that are divisit integer 2.3 5.7	
the integer 2,3,5,7. (c) What do you mean by indirect proof? Using indirect proof the odd, then n is odd.".	nat "If 3n+2 is (4,4,4.5)
Q3 (a) Without using truth table, prove the following:- $(\neg p \lor q) \land (p \land (p \land q)) \equiv (p \land q)$ (b) Consider the function $g: R \to R, g(x) = x^2$. Show that g is a bijec & onto).	tion (One-One (6,6.5)
UNIT-II	
Q4 (a) Show that every finite lattice has a least upper bound and a	greatest lower
bound. (b) Simplify the Boolean functions:- F=x'yz+x'yz'+xy'+xy'z F= x'yz+xy'z'+xyz+xyz'	(6,6.5)
Q5 (a) let L1 be the lattice D6(divisor of 6)={1,2,3,6} and let L2 be th C) where S= {a,b}. Show that two lattices are isomorphic.	e lattice (P(S),
(b) Simplify $y=\Sigma m(0,1,2,3,4,6,8,9,10,11,12,14)$ using K-map.	(6,6.5)
UNIT-III Q6 (a) Explain Eculidean algorithm to find the gcd of two nos by takin (b) Find the code words generated by the parity-check matrix given	
	P.T.O.

MCA-105 P1/2